I have a Pandas dataframe as follows:
In [10]: libor_table
Out[10]:
Euribor interest rate - 3 months Euribor interest rate - 6 months \
2015-07-17 -0.019% 0.049%
2015-07-16 -0.019% 0.049%
2015-07-15 -0.019% 0.049%
2015-07-14 -0.019% 0.049%
2015-07-13 -0.019% 0.049%
GBP LIBOR - 3 months GBP LIBOR - 6 months USD LIBOR - 3 months \
2015-07-17 0.58375% 0.75406% 0.29175%
2015-07-16 0.58438% 0.75313% 0.28700%
2015-07-15 0.58406% 0.75063% 0.28850%
2015-07-14 0.58219% 0.74250% 0.28850%
2015-07-13 0.58188% 0.73750% 0.28880%
USD LIBOR - 6 months
2015-07-17 0.46020%
2015-07-16 0.45570%
2015-07-15 0.46195%
2015-07-14 0.46345%
2015-07-13 0.46340%
The index is in datetime:
In [11]: libor_table.index
Out[11]:
DatetimeIndex(['2015-07-17', '2015-07-16', '2015-07-15', '2015-07-14',
'2015-07-13'],
dtype='datetime64[ns]', freq=None, tz=None)
My problem is when I then make the table into an HTML table using to_html()
. The standard dataframe converts to an HTML table just fine:
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Euribor interest rate - 3 months</th>
<th>Euribor interest rate - 6 months</th>
<th>GBP LIBOR - 3 months</th>
<th>GBP LIBOR - 6 months</th>
<th>USD LIBOR - 3 months</th>
<th>USD LIBOR - 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<th>2015-07-17</th>
<td>-0.019%</td>
<td>0.049%</td>
<td>0.58375%</td>
<td>0.75406%</td>
<td>0.29175%</td>
<td>0.46020%</td>
</tr>
<tr>
<th>2015-07-16</th>
<td>-0.019%</td>
<td>0.049%</td>
<td>0.58438%</td>
<td>0.75313%</td>
<td>0.28700%</td>
<td>0.45570%</td>
</tr>
<tr>
<th>2015-07-15</th>
<td>-0.019%</td>
<td>0.049%</td>
<td>0.58406%</td>
<td>0.75063%</td>
<td>0.28850%</td>
<td>0.46195%</td>
</tr>
<tr>
<th>2015-07-14</th>
<td>-0.019%</td>
<td>0.049%</td>
<td>0.58219%</td>
<td>0.74250%</td>
<td>0.28850%</td>
<td>0.46345%</td>
</tr>
<tr>
<th>2015-07-13</th>
<td>-0.019%</td>
<td>0.049%</td>
<td>0.58188%</td>
<td>0.73750%</td>
<td>0.28880%</td>
<td>0.46340%</td>
</tr>
</tbody>
</table>
However I would like to tranpose the dataframe for the HTML output - libor_table.transpose().to_html()
, when I do so pandas adds the time to the column title like so:
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>2015-07-17 00:00:00</th>
<th>2015-07-16 00:00:00</th>
<th>2015-07-15 00:00:00</th>
<th>2015-07-14 00:00:00</th>
<th>2015-07-13 00:00:00</th>
</tr>
</thead>
<tbody>
<tr>
<th>Euribor interest rate - 3 months</th>
<td>-0.019%</td>
<td>-0.019%</td>
<td>-0.019%</td>
<td>-0.019%</td>
<td>-0.019%</td>
</tr>
<tr>
<th>Euribor interest rate - 6 months</th>
<td>0.049%</td>
<td>0.049%</td>
<td>0.049%</td>
<td>0.049%</td>
<td>0.049%</td>
</tr>
<tr>
<th>GBP LIBOR - 3 months</th>
<td>0.58375%</td>
<td>0.58438%</td>
<td>0.58406%</td>
<td>0.58219%</td>
<td>0.58188%</td>
</tr>
<tr>
<th>GBP LIBOR - 6 months</th>
<td>0.75406%</td>
<td>0.75313%</td>
<td>0.75063%</td>
<td>0.74250%</td>
<td>0.73750%</td>
</tr>
<tr>
<th>USD LIBOR - 3 months</th>
<td>0.29175%</td>
<td>0.28700%</td>
<td>0.28850%</td>
<td>0.28850%</td>
<td>0.28880%</td>
</tr>
<tr>
<th>USD LIBOR - 6 months</th>
<td>0.46020%</td>
<td>0.45570%</td>
<td>0.46195%</td>
<td>0.46345%</td>
<td>0.46340%</td>
</tr>
</tbody>
</table>
Why does Pandas do this and is there a way of stopping it?
EDIT: This bug is submitted here.
libor_table.index = libor_table.index.date libor_table.T.to_html()
worth posting as an issue: github.com/pydata/pandas/issues – EdChum