I have constructed a minimum example of a problem I am facing in a larger sample of code. In this example, I want to find the sum of squares error of some data ys
to a function fs
, but I want to do it on multiple functions at a time, so I create fs
as a matrix. The original data has length gridSize
and I want to perform this cost function on nGrids
functions at a time, so fs
is of size nGrids*gridSize
.
I find that the CUDA kernel gives unreliable results in a non-deterministic fashion, which leads me to believe that I am not performing my threading correctly (this is my first CUDA
kernel!). I have run cuda-memcheck
on this program and it reveals no errors.
To test the sporadic nature of these errors, I wrote a script to run it 100 times and compare how often the results were randomly off. I find that there is a greater chance of it being off when gridSize
grows:
gridSize ... Errors
300 ... 0/100
400 ... 0/100
450 ... 4/100
500 ... 5/100
550 ... 55/100
600 ... 59/100
650 ... 100/100
The idea here was to have each block work on one grid and just call multiple CUDA
blocks when I want to step up the parallelism. Hence, I call 12 blocks here since there are 12 grids. I will never, for this code, have a gridSize
more than 1000, so I will leave Nthreads
at 1024
(since I have 1024 threads per block on my NVIDIA GTX 770
).
Here is the code:
#include <stdio.h>
#define nGrids 12
#define gridSize 700
void H_get_costs(float* h_xs, float* h_ys, float* h_fs, float* h_costs);
void D_get_costs(float* h_xs, float* h_ys, float* h_fs, float* d_costs);
/**************\
* cuda Costs *
\**************/
__global__ void cuCosts(float* d_xs, float* d_ys, float* d_fs, float* d_costs) {
int ir = threadIdx.x;
int ig = blockIdx.x;
__shared__ float diff[1024];
diff[ir] = 0.0;
__syncthreads();
if( ir < gridSize-1 && ig < nGrids) {
diff[ir] = (d_ys[ir] - d_fs[ig*gridSize + ir])*(d_ys[ir] - d_fs[ig*gridSize + ir]);
__syncthreads();
// reduction
for(int s=1; s < blockDim.x; s*=2) {
if( ir%(2*s) == 0 && ir+s < gridSize){
diff[ir] += diff[ir+s];
}
}
__syncthreads();
d_costs[ig] = diff[0];
}
__syncthreads();
}
/****************\
* Main routine *
\****************/
int main(int argc, char** argv) {
float h_xs[gridSize];
float h_ys[gridSize];
float h_fs[gridSize*nGrids];
for( int ir = 0; ir < gridSize; ir++) {
h_xs[ir] = (float)ir/10.0;
h_ys[ir] = (float)ir/10.0;
}
for(int ir = 0; ir < gridSize; ir++) {
for(int jgrid = 0; jgrid < nGrids; jgrid++) {
float trand = 2.0*((float)rand()/(float)RAND_MAX) - 1.0;
h_fs[jgrid*gridSize + ir] = h_ys[ir] + trand;
}
}
float h_costs[nGrids];
float d_costs[nGrids];
// get all of the costs (on the host)
H_get_costs(h_xs, h_ys, h_fs, h_costs);
// get all of the costs (on the device)
D_get_costs(h_xs, h_ys, h_fs, d_costs);
// Print the grids
/*
for(int ir = 0; ir < gridSize; ir++) {
printf("%10.5e %15.5e", h_xs[ir], h_ys[ir]);
for(int jg = 0; jg < nGrids; jg++) {
printf("%15.5e", h_fs[jg*gridSize + ir]);
}
printf("\n");
}
*/
// print the results
printf("--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
printf("%-25s ", "Host ... ");
for(int ig = 0; ig < nGrids; ig++) {
printf("%15.5e", h_costs[ig]);
}
printf("\n");
printf("--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
printf("%-25s ", "Device ... ");
for(int ig = 0; ig < nGrids; ig++) {
printf("%15.5e", d_costs[ig]);
}
printf("\n");
printf("--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n");
printf("%-25s ", "Difference ... ");
for(int ig = 0; ig < nGrids; ig++) {
printf("%15.5e", d_costs[ig]-h_costs[ig]);
}
printf("\n");
return 0;
}
/*******************************\
* get the costs (on the host) *
\*******************************/
void H_get_costs(float* h_xs, float* h_ys, float* h_fs, float* h_costs) {
for(int ig = 0; ig < nGrids; ig++) { h_costs[ig] = 0.0; }
for(int ir = 0; ir < gridSize-1; ir++) {
for(int ig = 0; ig < nGrids; ig++) {
h_costs[ig] += (h_ys[ir] - h_fs[ig*gridSize + ir])*(h_ys[ir] - h_fs[ig*gridSize + ir]);
}
}
}
/**************************\
* wrapper for cuda costs *
\**************************/
void D_get_costs(float* h_xs_p, float* h_ys_p, float* h_fs_p, float* r_costs) {
float* d_xs;
float* d_ys;
float* d_fs;
float* d_costs; // device costs
float* t_costs; // temporary costs
cudaMalloc( (void**)&d_xs, gridSize*sizeof(float) );
cudaMalloc( (void**)&d_ys, gridSize*sizeof(float) );
cudaMalloc( (void**)&d_fs, nGrids*gridSize*sizeof(float) );
cudaMalloc( (void**)&d_costs, nGrids*sizeof(float) );
t_costs = (float*)malloc(nGrids*sizeof(float));
cudaMemcpy( d_xs, h_xs_p, gridSize*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy( d_ys, h_ys_p, gridSize*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy( d_fs, h_fs_p, nGrids*gridSize*sizeof(float), cudaMemcpyHostToDevice);
int Nthreads = 1024;
int Nblocks = nGrids;
cuCosts<<<Nblocks, Nthreads>>>(d_xs, d_ys, d_fs, d_costs);
cudaMemcpy( t_costs, d_costs, nGrids*sizeof(float), cudaMemcpyDeviceToHost);
for(int ig = 0; ig < nGrids; ig++) {
r_costs[ig] = t_costs[ig];
}
cudaFree( d_xs );
cudaFree( d_ys );
cudaFree( d_fs );
}
If it matters, here is are the specs of my hardware:
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 770"
CUDA Driver Version / Runtime Version 6.0 / 5.5
CUDA Capability Major/Minor version number: 3.0
Total amount of global memory: 2047 MBytes (2146762752 bytes)
( 8) Multiprocessors, (192) CUDA Cores/MP: 1536 CUDA Cores
GPU Clock rate: 1084 MHz (1.08 GHz)
Memory Clock rate: 3505 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 524288 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.0, CUDA Runtime Version = 5.5, NumDevs = 1, Device0 = GeForce GTX 770
Result = PASS