Im new in spark and Machine learning in general. I have followed with success some of the Mllib tutorials, i can't get this one working:
i found the sample code here : https://spark.apache.org/docs/latest/mllib-linear-methods.html#linear-least-squares-lasso-and-ridge-regression
(section LinearRegressionWithSGD)
here is the code:
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.linalg.Vectors
// Load and parse the data
val data = sc.textFile("data/mllib/ridge-data/lpsa.data")
val parsedData = data.map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}.cache()
// Building the model
val numIterations = 100
val model = LinearRegressionWithSGD.train(parsedData, numIterations)
// Evaluate model on training examples and compute training error
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()
println("training Mean Squared Error = " + MSE)
// Save and load model
model.save(sc, "myModelPath")
val sameModel = LinearRegressionModel.load(sc, "myModelPath")
(that's exactly what's is on the website)
The result is
training Mean Squared Error = 6.2087803138063045
and
valuesAndPreds.collect
gives
Array[(Double, Double)] = Array((-0.4307829,-1.8383286021929077),
(-0.1625189,-1.4955700806407322), (-0.1625189,-1.118820892849544),
(-0.1625189,-1.6134108278724875), (0.3715636,-0.45171266551058276),
(0.7654678,-1.861316066986158), (0.8544153,-0.3588282725617985),
(1.2669476,-0.5036812148225209), (1.2669476,-1.1534698170911792),
(1.2669476,-0.3561392231695041), (1.3480731,-0.7347031705813306),
(1.446919,-0.08564658011814863), (1.4701758,-0.656725375080344),
(1.4929041,-0.14020483324910105), (1.5581446,-1.9438858658143454),
(1.5993876,-0.02181165554398845), (1.6389967,-0.3778677315868635),
(1.6956156,-1.1710092824030043), (1.7137979,0.27583044213064634),
(1.8000583,0.7812664902440078), (1.8484548,0.94605507153074),
(1.8946169,-0.7217282082851512), (1.9242487,-0.24422843221437684),...
My problem here is predictions looks totally random (and wrong), and since its the perfect copy of the website example, with the same input data (training set), i don't know where to look, am i missing something ?
Please give me some advices or clue about where to search, i can read and experiment.
Thanks