138
votes

So, per Mehrdad's answer to a related question, I get it that a "proper" database table column doesn't store a list. Rather, you should create another table that effectively holds the elements of said list and then link to it directly or through a junction table. However, the type of list I want to create will be composed of unique items (unlike the linked question's fruit example). Furthermore, the items in my list are explicitly sorted - which means that if I stored the elements in another table, I'd have to sort them every time I accessed them. Finally, the list is basically atomic in that any time I wish to access the list, I will want to access the entire list rather than just a piece of it - so it seems silly to have to issue a database query to gather together pieces of the list.

AKX's solution (linked above) is to serialize the list and store it in a binary column. But this also seems inconvenient because it means that I have to worry about serialization and deserialization.

Is there any better solution? If there is no better solution, then why? It seems that this problem should come up from time to time.

... just a little more info to let you know where I'm coming from. As soon as I had just begun understanding SQL and databases in general, I was turned on to LINQ to SQL, and so now I'm a little spoiled because I expect to deal with my programming object model without having to think about how the objects are queried or stored in the database.

Thanks All!

John

UPDATE: So in the first flurry of answers I'm getting, I see "you can go the CSV/XML route... but DON'T!". So now I'm looking for explanations of why. Point me to some good references.

Also, to give you a better idea of what I'm up to: In my database I have a Function table that will have a list of (x,y) pairs. (The table will also have other information that is of no consequence for our discussion.) I will never need to see part of the list of (x,y) pairs. Rather, I will take all of them and plot them on the screen. I will allow the user to drag the nodes around to change the values occasionally or add more values to the plot.

13

13 Answers

216
votes

No, there is no "better" way to store a sequence of items in a single column. Relational databases are designed specifically to store one value per row/column combination. In order to store more than one value, you must serialize your list into a single value for storage, then deserialize it upon retrieval. There is no other way to do what you're talking about (because what you're talking about is a bad idea that should, in general, never be done).

I understand that you think it's silly to create another table to store that list, but this is exactly what relational databases do. You're fighting an uphill battle and violating one of the most basic principles of relational database design for no good reason. Since you state that you're just learning SQL, I would strongly advise you to avoid this idea and stick with the practices recommended to you by more seasoned SQL developers.

The principle you're violating is called first normal form, which is the first step in database normalization.

At the risk of oversimplifying things, database normalization is the process of defining your database based upon what the data is, so that you can write sensible, consistent queries against it and be able to maintain it easily. Normalization is designed to limit logical inconsistencies and corruption in your data, and there are a lot of levels to it. The Wikipedia article on database normalization is actually pretty good.

Basically, the first rule (or form) of normalization states that your table must represent a relation. This means that:

  • You must be able to differentiate one row from any other row (in other words, you table must have something that can serve as a primary key. This also means that no row should be duplicated.
  • Any ordering of the data must be defined by the data, not by the physical ordering of the rows (SQL is based upon the idea of a set, meaning that the only ordering you should rely on is that which you explicitly define in your query)
  • Every row/column intersection must contain one and only one value

The last point is obviously the salient point here. SQL is designed to store your sets for you, not to provide you with a "bucket" for you to store a set yourself. Yes, it's possible to do. No, the world won't end. You have, however, already crippled yourself in understanding SQL and the best practices that go along with it by immediately jumping into using an ORM. LINQ to SQL is fantastic, just like graphing calculators are. In the same vein, however, they should not be used as a substitute for knowing how the processes they employ actually work.

Your list may be entirely "atomic" now, and that may not change for this project. But you will, however, get into the habit of doing similar things in other projects, and you'll eventually (likely quickly) run into a scenario where you're now fitting your quick-n-easy list-in-a-column approach where it is wholly inappropriate. There is not much additional work in creating the correct table for what you're trying to store, and you won't be derided by other SQL developers when they see your database design. Besides, LINQ to SQL is going to see your relation and give you the proper object-oriented interface to your list automatically. Why would you give up the convenience offered to you by the ORM so that you can perform nonstandard and ill-advised database hackery?

18
votes

You can just forget SQL all together and go with a "NoSQL" approach. RavenDB, MongoDB and CouchDB jump to mind as possible solutions. With a NoSQL approach, you are not using the relational model..you aren't even constrained to schemas.

12
votes

What I have seen many people do is this (it may not be the best approach, correct me if I am wrong):

The table which I am using in the example is given below(the table includes nicknames that you have given to your specific girlfriends. Each girlfriend has a unique id):

nicknames(id,seq_no,names)

Suppose, you want to store many nicknames under an id. This is why we have included a seq_no field.

Now, fill these values to your table:

(1,1,'sweetheart'), (1,2,'pumpkin'), (2,1,'cutie'), (2,2,'cherry pie')

If you want to find all the names that you have given to your girl friend id 1 then you can use:

select names from nicknames where id = 1;
6
votes

Simple answer: If, and only if, you're certain that the list will always be used as a list, then join the list together on your end with a character (such as '\0') that will not be used in the text ever, and store that. Then when you retrieve it, you can split by '\0'. There are of course other ways of going about this stuff, but those are dependent on your specific database vendor.

As an example, you can store JSON in a Postgres database. If your list is text, and you just want the list without further hassle, that's a reasonable compromise.

Others have ventured suggestions of serializing, but I don't really think that serializing is a good idea: Part of the neat thing about databases is that several programs written in different languages can talk to one another. And programs serialized using Java's format would not do all that well if a Lisp program wanted to load it.

If you want a good way to do this sort of thing there are usually array-or-similar types available. Postgres for instance, offers array as a type, and lets you store an array of text, if that's what you want, and there are similar tricks for MySql and MS SQL using JSON, and IBM's DB2 offer an array type as well (in their own helpful documentation). This would not be so common if there wasn't a need for this.

What you do lose by going that road is the notion of the list as a bunch of things in sequence. At least nominally, databases treat fields as single values. But if that's all you want, then you should go for it. It's a value judgement you have to make for yourself.

4
votes

In addition to what everyone else has said, I would suggest you analyze your approach in longer terms than just now. It is currently the case that items are unique. It is currently the case that resorting the items would require a new list. It is almost required that the list are currently short. Even though I don't have the domain specifics, it is not much of a stretch to think those requirements could change. If you serialize your list, you are baking in an inflexibility that is not necessary in a more-normalized design. Btw, that does not necessarily mean a full Many:Many relationship. You could just have a single child table with a foreign key to the parent and a character column for the item.

If you still want to go down this road of serializing the list, you might consider storing the list in XML. Some databases such as SQL Server even have an XML data type. The only reason I'd suggest XML is that almost by definition, this list needs to be short. If the list is long, then serializing it in general is an awful approach. If you go the CSV route, you need to account for the values containing the delimiter which means you are compelled to use quoted identifiers. Persuming that the lists are short, it probably will not make much difference whether you use CSV or XML.

2
votes

I'd just store it as CSV, if it's simple values then it should be all you need (XML is very verbose and serializing to/from it would probably be overkill but that would be an option as well).

Here's a good answer for how to pull out CSVs with LINQ.

2
votes

If you need to query on the list, then store it in a table.

If you always want the list, you could store it as a delimited list in a column. Even in this case, unless you have VERY specific reasons not to, store it in a lookup table.

2
votes

Many SQL databases allow a table to contain a subtable as a component. The usual method is to allow the domain of one of the columns to be a table. This is in addition to using some convention like CSV to encode the substructure in ways unknown to the DBMS.

When Ed Codd was developing the relational model in 1969-1970, he specifically defined a normal form that would disallow this kind of nesting of tables. Normal form was later called First Normal Form. He then went on to show that for every database, there is a database in first normal form that expresses the same information.

Why bother with this? Well, databases in first normal form permit keyed access to all data. If you provide a table name, a key value into that table, and a column name, the database will contain at most one cell containing one item of data.

If you allow a cell to contain a list or a table or any other collection, now you can't provide keyed access to the sub items, without completely reworking the idea of a key.

Keyed access to all data is fundamental to the relational model. Without this concept, the model isn't relational. As to why the relational model is a good idea, and what might be the limitations of that good idea, you have to look at the 50 years worth of accumulated experience with the relational model.

1
votes

Only one option doesn't mentioned in the answers. You can de-normalize your DB design. So you need two tables. One table contains proper list, one item per row, another table contains whole list in one column (coma-separated, for example).

Here it is 'traditional' DB design:

List(ListID, ListName) 
Item(ItemID,ItemName) 
List_Item(ListID, ItemID, SortOrder)

Here it is de-normalized table:

Lists(ListID, ListContent)

The idea here - you maintain Lists table using triggers or application code. Every time you modify List_Item content, appropriate rows in Lists get updated automatically. If you mostly read lists it could work quite fine. Pros - you can read lists in one statement. Cons - updates take more time and efforts.

0
votes

If you really wanted to store it in a column and have it queryable a lot of databases support XML now. If not querying you can store them as comma separated values and parse them out with a function when you need them separated. I agree with everyone else though if you are looking to use a relational database a big part of normalization is the separating of data like that. I am not saying that all data fits a relational database though. You could always look into other types of databases if a lot of your data doesn't fit the model.

0
votes

I think in certain cases, you can create a FAKE "list" of items in the database, for example, the merchandise has a few pictures to show its details, you can concatenate all the IDs of pictures split by comma and store the string into the DB, then you just need to parse the string when you need it. I am working on a website now and I am planning to use this way.

0
votes

I was very reluctant to choose the path I finally decide to take because of many answers. While they add more understanding to what is SQL and its principles, I decided to become an outlaw. I was also hesitant to post my findings as for some it's more important to vent frustration to someone breaking the rules rather than understanding that there are very few universal truthes.

I have tested it extensively and, in my specific case, it was way more efficient than both using array type (generously offered by PostgreSQL) or querying another table.

Here is my answer: I have successfully implemented a list into a single field in PostgreSQL, by making use of the fixed length of each item of the list. Let say each item is a color as an ARGB hex value, it means 8 char. So you can create your array of max 10 items by multiplying by the length of each item:

ALTER product ADD color varchar(80)

In case your list items length differ you can always fill the padding with \0

NB: Obviously this is not necessarily the best approach for hex number since a list of integers would consume less storage but this is just for the purpose of illustrating this idea of array by making use of a fixed length allocated to each item.

The reason why: 1/ Very convenient: retrieve item i at substring i*n, (i +1)*n. 2/ No overhead of cross tables queries. 3/ More efficient and cost-saving on the server side. The list is like a mini blob that the client will have to split.

While I respect people following rules, many explanations are very theoretical and often fail to acknowledge that, in some specific cases, especially when aiming for cost optimal with low-latency solutions, some minor tweaks are more than welcome.

"God forbid that it is violating some holy sacred principle of SQL": Adopting a more open-minded and pragmatic approach before reciting the rules is always the way to go. Else you might end up like a candid fanatic reciting the Three Laws of Robotics before being obliterated by Skynet

I don't pretend that this solution is a breakthrough, nor that it is ideal in term of readability and database flexibility, but it can certainly give you an edge when it comes to latency.

-1
votes

you can store it as text that looks like a list and create a function that can return its data as an actual list. example:

database:

 _____________________
|  word  | letters    |
|   me   | '[m, e]'   |
|  you   |'[y, o, u]' |  note that the letters column is of type 'TEXT'
|  for   |'[f, o, r]' |
|___in___|_'[i, n]'___|

And the list compiler function (written in python, but it should be easily translatable to most other programming languages). TEXT represents the text loaded from the sql table. returns list of strings from string containing list. if you want it to return ints instead of strings, make mode equal to 'int'. Likewise with 'string', 'bool', or 'float'.

def string_to_list(string, mode):
    items = []
    item = ""
    itemExpected = True
    for char in string[1:]:
        if itemExpected and char not in [']', ',', '[']:
            item += char
        elif char in [',', '[', ']']:
            itemExpected = True
            items.append(item)
            item = ""
    newItems = []
    if mode == "int":
        for i in items:
            newItems.append(int(i))

    elif mode == "float":
        for i in items:
            newItems.append(float(i))

    elif mode == "boolean":
        for i in items:
            if i in ["true", "True"]:
                newItems.append(True)
            elif i in ["false", "False"]:
                newItems.append(False)
            else:
                newItems.append(None)
    elif mode == "string":
        return items
    else:
        raise Exception("the 'mode'/second parameter of string_to_list() must be one of: 'int', 'string', 'bool', or 'float'")
    return newItems

Also here is a list-to-string function in case you need it.

def list_to_string(lst):
    string = "["
    for i in lst:
        string += str(i) + ","
    if string[-1] == ',':
        string = string[:-1] + "]"
    else:
        string += "]"
    return string