Scott encodings are basically representing a T
by the type of its case expression. So for lists, we would define a case expression like so:
listCase :: List a -> r -> (a -> List a -> r) -> r
listCase [] n c = n
listCase (x:xs) n c = c x xs
this gives us an analogy like so:
case xs of { [] -> n ; (x:xs) -> c }
=
listCase xs n (\x xs -> c)
This gives a type
newtype List a = List { listCase :: r -> (a -> List a -> r) -> r }
The constructors are just the values that pick the appropriate branches:
nil :: List a
nil = List $ \n c -> n
cons :: a -> List a -> List a
cons x xs = List $ \n c -> c x xs
We can work backwards then, from a boring case expression, to the case function, to the type, for your trees:
case t of { Leaf x -> l ; Node xs -> n }
which should be roughly like
treeCase t (\x -> l) (\xs -> n)
So we get
treeCase :: Tree a -> (a -> r) -> (List (Tree a) -> r) -> r
treeCase (Leaf x) l n = l x
treeCase (Node xs) l n = n xs
newtype Tree a = Tree { treeCase :: (a -> r) -> (List (Tree a) -> r) -> r }
leaf :: a -> Tree a
leaf x = Tree $ \l n -> l x
node :: List (Tree a) -> Tree a
node xs = Tree $ \l n -> n xs
Scott encodings are very easy tho, because they're only case. Church encodings are folds, which are notoriously hard for nested types.
data Tree a = Node a | Leaf a
, i.e.node = (λ x n l. n x)
, etc. After all, the list encoding didn't care about the recursive reference -- the encoding is the same as fordata List a = Cons a a | Nil
. Still, I am not familiar enough with SE to write an actual answer. – chi