You can do something like that using matplotlib widgets, for example check out the lasso method of selecting points.
You can then use the selected point in any form of analysis you need.
EDIT: Combined lasso and SpanSelect widget from matplotlib examples
#!/usr/bin/env python
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import SpanSelector, LassoSelector
from matplotlib.path import Path
import matplotlib.pyplot as plt
try:
raw_input
except NameError:
# Python 3
raw_input = input
class SelectFromCollection(object):
"""Select indices from a matplotlib collection using `LassoSelector`.
Selected indices are saved in the `ind` attribute. This tool highlights
selected points by fading them out (i.e., reducing their alpha values).
If your collection has alpha < 1, this tool will permanently alter them.
Note that this tool selects collection objects based on their *origins*
(i.e., `offsets`).
Parameters
----------
ax : :class:`~matplotlib.axes.Axes`
Axes to interact with.
collection : :class:`matplotlib.collections.Collection` subclass
Collection you want to select from.
alpha_other : 0 <= float <= 1
To highlight a selection, this tool sets all selected points to an
alpha value of 1 and non-selected points to `alpha_other`.
"""
def __init__(self, ax, collection, alpha_other=0.3):
self.canvas = ax.figure.canvas
self.collection = collection
self.alpha_other = alpha_other
self.xys = collection.get_offsets()
self.Npts = len(self.xys)
# Ensure that we have separate colors for each object
self.fc = collection.get_facecolors()
if len(self.fc) == 0:
raise ValueError('Collection must have a facecolor')
elif len(self.fc) == 1:
self.fc = np.tile(self.fc, self.Npts).reshape(self.Npts, -1)
self.lasso = LassoSelector(ax, onselect=self.onselect)
self.ind = []
def onselect(self, verts):
path = Path(verts)
self.ind = np.nonzero([path.contains_point(xy) for xy in self.xys])[0]
self.fc[:, -1] = self.alpha_other
self.fc[self.ind, -1] = 1
self.collection.set_facecolors(self.fc)
self.canvas.draw_idle()
def disconnect(self):
self.lasso.disconnect_events()
self.fc[:, -1] = 1
self.collection.set_facecolors(self.fc)
self.canvas.draw_idle()
def onselect(xmin, xmax):
indmin, indmax = np.searchsorted(x, (xmin, xmax))
indmax = min(len(x)-1, indmax)
thisx = x[indmin:indmax]
thisy = y[indmin:indmax]
line2.set_data(thisx, thisy)
ax2.set_xlim(thisx[0], thisx[-1])
ax2.set_ylim(thisy.min(), thisy.max())
fig.canvas.draw()
if __name__ == '__main__':
plt.ion()
fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(211, axisbg='#FFFFCC')
x = np.arange(0.0, 5.0, 0.01)
y = np.sin(2*np.pi*x) + 0.5*np.random.randn(len(x))
ax.plot(x, y, '-')
ax.set_ylim(-2,2)
ax.set_title('Press left mouse button and drag to test')
ax2 = fig.add_subplot(212, axisbg='#FFFFCC')
line2, = ax2.plot(x, y, '-')
pts = ax2.scatter(x, y)
# set useblit True on gtkagg for enhanced performance
span = SpanSelector(ax, onselect, 'horizontal', useblit=True,
rectprops=dict(alpha=0.5, facecolor='red') )
selector = SelectFromCollection(ax2, pts)
plt.draw()
raw_input('Press any key to accept selected points')
print("Selected points:")
print(selector.xys[selector.ind])
selector.disconnect()
# Block end of script so you can check that the lasso is disconnected.
raw_input('Press any key to quit')
magnitudes
andfrequencies
. Do you just want to domaxima = magnitudes == scipy.ndimage.maximum_filter(magnitudes, 3); print frequencies[maxima], magnitudes[maxima]
? – Ben