I'm using decision tree classifier from the scikit-learn package in python 3.4, and I want to get the corresponding leaf node id for each of my input data point.
For example, my input might look like this:
array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2]])
and let's suppose the corresponding leaf nodes are 16, 5 and 45 respectively. I want my output to be:
leaf_node_id = array([16, 5, 45])
I have read through the scikit-learn mailing list and related questions on SF but I still can't get it to work. Here is some hint I found on the mailing list, but still does not work.
http://sourceforge.net/p/scikit-learn/mailman/message/31728624/
At the end of the day, I just want to have a function GetLeafNode(clf, X_valida) such that its output is a list of corresponding leaf nodes. Below is the code that reproduces the error I received. So, any suggestion will be very appreciated.
from sklearn.datasets import load_iris
from sklearn import tree
# load data and divide it to train and validation
iris = load_iris()
num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]
y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]
# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)
# This gives the error message below:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-17-2ecc95213752> in <module>()
----> 1 clf.tree_.apply(X_train)
_tree.pyx in sklearn.tree._tree.Tree.apply (sklearn/tree/_tree.c:19595)()
ValueError: Buffer dtype mismatch, expected 'DTYPE_t' but got 'double'