How can I improve my parser grammar so that instead of creating an AST that contains couple of decFunc
rules for my testing code. It will create only one and sum
becomes the second root. I tried to solve this problem using multiple different ways but I always get a left recursive error.
This is my testing code :
f :: [Int] -> [Int] -> [Int]
f x y = zipWith (sum) x y
sum :: [Int] -> [Int]
sum a = foldr(+) a
This is my grammar:
This is the image that has two decFunc
in this link
http://postimg.org/image/w5goph9b7/
prog : stat+;
stat : decFunc | impFunc ;
decFunc : ID '::' formalType ( ARROW formalType )* NL impFunc
;
anotherFunc : ID+;
formalType : 'Int' | '[' formalType ']' ;
impFunc : ID+ '=' hr NL
;
hr : 'map' '(' ID* ')' ID*
| 'zipWith' '(' ('*' |'/' |'+' |'-') ')' ID+ | 'zipWith' '(' anotherFunc ')' ID+
| 'foldr' '(' ('*' |'/' |'+' |'-') ')' ID+
| hr op=('*'| '/' | '.&.' | 'xor' ) hr | DIGIT
| 'shiftL' hr hr | 'shiftR' hr hr
| hr op=('+'| '-') hr | DIGIT
| '(' hr ')'
| ID '(' ID* ')'
| ID
;
decFunc
". Try creating an AST similar to what you want. – MephydecFunc
rule. The generated parse-tree shows exactly that: two sub-trees, each having adeFunc
instance as the root. Antlr v4 will not produce a true AST wheref
andsum
are the roots of separate sub-trees, if that is what you are looking for. – GRosenberg