Erlang and obviously Elixir that is built on top of it, embraces immutability.
They simply don’t allow values in a certain memory location to change. Never Until the variable gets garbage collected or is out of scope.
Variables aren't the immutable thing. The data they point to is the immutable thing. That's why changing a variable is referred to as rebinding.
You're point it at something else, not changing the thing it points to.
x = 1
followed by x = 2
doesn't change the data stored in computer memory where the 1 was to a 2. It puts a 2 in a new place and points x
at it.
x
is only accessible by one process at a time so this has no impact on concurrency and concurrency is the main place to even care if something is immutable anyway.
Rebinding doesn’t change the state of an object at all, the value is still in the same memory location, but it’s label (variable) now points to another memory location, so immutability is preserved. Rebinding is not available in Erlang, but while it is in Elixir this is not braking any constraint imposed by the Erlang VM, thanks to its implementation.
The reasons behind this choice are well explained by Josè Valim in this gist .
Let's say you had a list
l = [1, 2, 3]
and you had another process that was taking lists and then performing "stuff" against them repeatedly and changing them during this process would be bad. You might send that list like
send(worker, {:dostuff, l})
Now, your next bit of code might want to update l with more values for further work that's unrelated to what that other process is doing.
l = l ++ [4, 5, 6]
Oh no, now that first process is going to have undefined behavior because you changed the list right? Wrong.
That original list remains unchanged. What you really did was make a new list based on the old one and rebind l to that new list.
The separate process never has access to l. The data l originally pointed at is unchanged and the other process (presumably, unless it ignored it) has its own separate reference to that original list.
What matters is you can't share data across processes and then change it while another process is looking at it. In a language like Java where you have some mutable types (all primitive types plus references themselves) it would be possible to share a structure/object that contained say an int and change that int from one thread while another was reading it.
In fact, it's possible to change a large integer type in java partially while it's read by another thread. Or at least, it used to be, not sure if they clamped that aspect of things down with the 64 bit transition. Anyway, point is, you can pull the rug out from under other processes/threads by changing data in a place that both are looking at simultaneously.
That's not possible in Erlang and by extension Elixir. That's what immutability means here.
To be a bit more specific, in Erlang (the original language for the VM Elixir runs on) everything was single-assignment immutable variables and Elixir is hiding a pattern Erlang programmers developed to work around this.
In Erlang, if a=3 then that was what a was going to be its value for the duration of that variable's existence until it dropped out of scope and was garbage collected.
This was useful at times (nothing changes after assignment or pattern match so it is easy to reason about what a function is doing) but also a bit cumbersome if you were doing multiple things to a variable or collection over the course executing a function.
Code would often look like this:
A=input,
A1=do_something(A),
A2=do_something_else(A1),
A3=more_of_the_same(A2)
This was a bit clunky and made refactoring more difficult than it needed to be. Elixir is doing this behind the scenes, but hiding it from the programmer via macros and code transforms performed by the compiler.
Great discussion here
immutability-in-elixir