I use Spark 1.3.0 in a cluster of 5 worker nodes with 36 cores and 58GB of memory each. I'd like to configure Spark's Standalone cluster with many executors per worker.
I have seen the merged SPARK-1706, however it is not immediately clear how to actually configure multiple executors.
Here is the latest configuration of the cluster:
spark.executor.cores = "15"
spark.executor.instances = "10"
spark.executor.memory = "10g"
These settings are set on a SparkContext
when the Spark application is submitted to the cluster.