I have get an error when using mllib RandomForest to train data. As my dataset is huge and the default partition is relative small. so an exception thrown indicating that "Size exceeds Integer.MAX_VALUE" ,the orignal stack trace as following,
15/04/16 14:13:03 WARN scheduler.TaskSetManager: Lost task 19.0 in stage 6.0 (TID 120, 10.215.149.47): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828) at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123) at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132) at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:517) at org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:432) at org.apache.spark.storage.BlockManager.get(BlockManager.scala:618) at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:146) at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)
The Integer.MAX_SIZE is 2GB, it seems that some partition out of memory. So i repartiton my rdd partition to 1000, so that each partition could hold far less data as before. Finally, the problem is solved!!!
So, my question is : Why partition size has the 2G limit? It seems that there is no configure set for the limit in the spark