The problem is as it follows:
Given N (N <= 100,000) points by their Cartesian coordinates, test if every rectangle (with an area > 0) built using any two of them contains at least another point from that list either inside the rectangle or on his margin.
I know the algorithm for O(N^2) time complexity. I want to find the solution for O(N * logN). Memory is not a problem.
When I say two points define a rectangle, I mean that those two points are in two of its opposite corners. The sides of the rectangles are parallel to the Cartesian axes.
Here are two examples:
N = 4
Points:
1 1
3 5
2 4
8 8
INCORRECT: (the rectangle (1, 1) - (2, 4) doesn't have any point inside of it or on its margin).
N = 3
Points:
10 9
13 9
10 8
CORRECT.