I have created a loop to fit a non-linear model to six data points by participants (each participant has 6 data points). The first model is a one parameter model. Here is the code for that model that works great. The time variable is defined. The participant variable is the id variable. The data is in long form (one row for each datapoint of each participant).
Here is the loop code with 1 parameter that works:
1_p_model <- dlply(discounting_long, .(Participant), function(discounting_long) {wrapnls(indiff ~ 1/(1+k*time), data = discounting_long, start = c(k=0))})
However, when I try to fit a two parameter model, I get this error "Error: singular gradient matrix at initial parameter estimates" while still using the wrapnls function. I realize that the model is likely over parameterized, that is why I am trying to use wrapnls instead of just nls (or nlsList). Some in my field insist on seeing both model fits. I thought that the wrapnls model avoids the problem of 0 or near-0 residuals. Here is my code that does not work. The start values and limits are standard in the field for this model.
2_p_model <- dlply(discounting_long, .(Participant), function(discounting_long) {nlxb(indiff ~ 1/(1+k*time^s), data = discounting_long, lower = c (s = 0), start = c(k=0, s=.99), upper = c(s=1))})
I realize that I could use nlxb (which does give me the correct parameter values for each participant) but that function does not give predictive values or residuals of each data point (at least I don't think it does) which I would like to compute AIC values.
I am also open to other solutions for running a loop through the data by participants.