It really depends how you want to represent your "mapping". In Prolog, a table of facts is the most obvious approach. For two mappings m and n:
m(a, 1).
m(b, 2).
m(c, 3). % and so on
n(a, foo).
n(b, bar).
n(c, baz). % and so on
Then, your mapof would be something along the lines of:
mapof(K, m, V) :- m(K, V).
mapof(K, n, V) :- n(K, V).
or maybe:
mapof(K, M, V) :- call(M, K, V).
A list can be used to represent a mapping, as shown by @Yasel, but a list [a, b, c] in Prolog is a nested term like .(a, .(b, .(c, []))). You don't usually represent an associative array as a singly linked list, right?
In SWI-Prolog there is a library that is better than using a simple list for a backtrackable associative array represented as a Prolog term: library(assoc). With it, you can do:
mapof(K, M, V) :- gen_assoc(K, M, V).
This library represents the associative array as an AVL tree. You can find in the SWI-Prolog code source two more associative array implementations: one using RB-trees, and one that uses non-backtrackable RB-trees.
All three libraries mentioned here are probably more efficient than a simple list of key-value pairs [k1-v1, k2-v2...] if your associative array has more than say around 100 key-value pairs in it. This doesn't mean that using a list of pairs and doing member(Key-Value, List_of_pairs) is wrong; it is the cheapest solution for simple cases.