0
votes

I have an Nx2 matrix of data points where each row is a data point. I also have an NxK matrix of indices of the K nearest neighbours from the knnsearch function. I am trying to create a matrix that contains in each row the data point followed by the K neighbouring data points, i.e. for K = 2 we would have something like [data1, neighbour1, neighbour2] for each row.

I have been messing round with loops and attempting to index with matrices but to no avail, the fact that each datapoint is 1x2 is confusing me. My ultimate aim is to calculate gradients to train an RBF network in a similar manner to:

D = (x_dist - y_dist)./(y_dist+(y_dist==0));
temp = y';
neg_gradient = -2.*sum(kron(D, ones(1,2)) .* ...
    (repmat(y, 1, ndata) - repmat((temp(:))', ndata, 1)), 1);
neg_gradient = (reshape(neg_gradient, net.nout, ndata))';
1

1 Answers

0
votes

You could use something along those lines:

K = 2;
nearest = knnsearch(data, data, 'K', K+1);%// Gets point itself and K nearest ones
mat = reshape(data(nearest.',:).',[],N).'; %// Extracts the coordinates

We generate data(nearest.',:) to get a 3*N-by-2 matrix, where every 3 consecutive rows are the points that correspond to each other. We transpose this to get the xy-coordinates into the same column. (MATLAB is column major, i.e. values in a column are stored consecutively). Then we reshape the data, so every column contains the xy-coordinates of the rows of nearest. So we only need to transpose once more in the end.