1
votes

I have successfully played audio on the 3.5mm headphone jack analogue output on the Raspberry Pi using PulseAudio and Qt5.4's QAudioOutput. The audio is successfully being transported from a remote microphone over a XBee link at 8KHz with 8-bit samples.

There was a huge latency with PulseAudio so I decided to link against libasound ( ALSA ) and play the audio directly. My code is below and successfully opens and plays sound but it is almost unrecognizable, there is lots of crackling and squeaking. If I speak into the remote microphone, I very quickly hear elevated scratching and squeaking in the headphones from the Pi ( but it is not good audio ) . I think I have my parameters messed up.

1.) The data is transmitted in BigEndian - QAudioOutput allows you to inform it that the samples are BigEndian. But these are U8 samples so do I need to worry about endianness? 2.) Can you see anything wrong with my configuration below? 3.) How do I figure out Fragment Size for ALSA for the output on the Pi? 4.) Can someone explain how I should write my buffer to the audio device?

Thanks!

Here is my code:

UdpReceiver::UdpReceiver(QObject *parent) :
    QObject(parent)
{

    // Debug
    qDebug() << "Setting up a UDP Socket...";

    // Create a socket
    m_Socket = new QUdpSocket(this);

    // Bind to the 2616 port
    bool didBind = m_Socket->bind(QHostAddress::Any, 0x2616);
    if ( !didBind ) {
        qDebug() << "Error - could not bind to UDP Port!";
    }
    else {
        qDebug() << "Success binding to port 0x2616!";
    }

    // Get notified that data is incoming to the socket
    connect(m_Socket, SIGNAL(readyRead()), this, SLOT(readyRead()));

    // Init to Zero
    m_NumberUDPPacketsReceived = 0;

}

void UdpReceiver::readyRead() {

    // When data comes in
    QByteArray buffer;
    buffer.resize(m_Socket->pendingDatagramSize());

    QHostAddress sender;
    quint16 senderPort;

    // Cap buffer size
    int lenToRead = buffer.size();
    if ( buffer.size() > NOMINAL_AUDIO_BUFFER_SIZE ) {
        lenToRead = NOMINAL_AUDIO_BUFFER_SIZE;
    }

    // Read the data from the UDP Port
    m_Socket->readDatagram(buffer.data(), lenToRead,
                         &sender, &senderPort);

    // Kick off audio playback
    if ( m_NumberUDPPacketsReceived == 0 ) {

        qDebug() << "Received Data - Setting up ALSA Now....";

        // Error handling
        int err;

        // Device to Write to
        char *snd_device_out  = "hw:0,0";

        if ((err = snd_pcm_open (&playback_handle, snd_device_out, SND_PCM_STREAM_PLAYBACK, 0)) < 0) {
            fprintf (stderr, "cannot open audio device %s (%s)\n",
                    snd_device_out,
                    snd_strerror (err));
            exit (1);
        }

        if ((err = snd_pcm_hw_params_malloc (&hw_params)) < 0) {
            fprintf (stderr, "cannot allocate hardware parameter structure (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        if ((err = snd_pcm_hw_params_any (playback_handle, hw_params)) < 0) {
            fprintf (stderr, "cannot initialize hardware parameter structure (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        if ((err = snd_pcm_hw_params_set_access (playback_handle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0) {
            fprintf (stderr, "cannot set access type (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        if ((err = snd_pcm_hw_params_set_format (playback_handle, hw_params, SND_PCM_FORMAT_U8)) < 0) { // Unsigned 8 bit
            fprintf (stderr, "cannot set sample format (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        uint sample_rate = 8000;
        if ((err = snd_pcm_hw_params_set_rate_near (playback_handle, hw_params, &sample_rate, 0)) < 0) { // 8 KHz
            fprintf (stderr, "cannot set sample rate (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        if ((err = snd_pcm_hw_params_set_channels (playback_handle, hw_params, 1)) < 0) { // 1 Channel Mono
            fprintf (stderr, "cannot set channel count (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        if ((err = snd_pcm_hw_params (playback_handle, hw_params)) < 0) {
            fprintf (stderr, "cannot set parameters (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        snd_pcm_hw_params_free (hw_params);

        // Flush handle prepare for playback
        snd_pcm_drop(playback_handle);

        if ((err = snd_pcm_prepare (playback_handle)) < 0) {
            fprintf (stderr, "cannot prepare audio interface for use (%s)\n",
                     snd_strerror (err));
            exit (1);
        }

        qDebug() << "Done Setting up ALSA....";

    }

    // Grab the buffer
    m_Buffer = buffer.data();

    // Write the data to the ALSA device
    int error;
    for (int i = 0; i < 10; ++i) {
        if ((error = snd_pcm_writei (playback_handle, m_Buffer, NOMINAL_AUDIO_BUFFER_SIZE)) != NOMINAL_AUDIO_BUFFER_SIZE) {
            fprintf (stderr, "write to audio interface failed (%s)\n",
                     snd_strerror (error));
            exit (1);
        }
    }

    // Count up
    m_NumberUDPPacketsReceived++;

}
1

1 Answers

2
votes
  1. No.
  2. snd_pcm_hw_params_set_rate_near() will change the rate to the nearest supported rate. You probably don't want that.
  3. ALSA has no fragment size.

    It has buffer and period sizes; you need to set them according to your timing requirements (see ALSA: Relation between period size of speaker and mic).

  4. You cannot simply output the received samples; you must resample them to the speed of the playback device (which is not exactly the same even if it uses the same nominal sample rate).