I am trying to determine camera pose based on fiducial marker found in a scene.
Fiducial: http://tinypic.com/view.php?pic=4r6k3q&s=8#.VNLnWTVVK1E
Current process:
- Use SIFT for feature detection
- Use SIFT for descriptor extraction
- Use FLANN for matching
- Find the homography using CV_RANSAC
- Identify the corners of the fiducial
- Identify corners of the fiducial in the scene using perspectiveTransform()
- Draw lines around corners (i.e. prove that it found the fiducial in the scene
- Run camera calibration
- Load calibration results (cameraMatrix & distortionCoefficients)
Now I am trying to figure out the camera pose. I attempted to use:
void solvePnP(const Mat& objectPoints, const Mat& imagePoints, const Mat& cameraMatrix, const Mat& distCoeffs, Mat& rvec, Mat& tvec, bool useExtrinsicGuess=false)
where:
- obectPoints are the fiducial corners
- imagePoints are the fiducial corners in the scene
- cameraMatrix is from calibration
- distCoeffs is from calibration
- rvec and tvec should be returned to me from this function
However, when I run this, I get a core dump error, so I am not sure what I am doing incorrectly.
I haven't found very good documentation on solvePNP() - did I misunderstand the function or input parameters?
Appreciate your help
Update Here is my process:
OrbFeatureDetector detector; //Orb seems more accurate than SIFT
vector<KeyPoint> keypoints1, keypoints2;
detector.detect(marker_im, keypoints1);
detector.detect(scene_im, keypoints2);
Mat display_marker_im, display_scene_im;
drawKeypoints(marker_im, keypoints1, display_marker_im, Scalar(0,0,255));
drawKeypoints(scene_im, keypoints2, display_scene_im, Scalar(0,0,255));
SiftDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute( marker_im, keypoints1, descriptors1 );
extractor.compute( scene_im, keypoints2, descriptors2 );
BFMatcher matcher; //BF seems to match better than FLANN
vector< DMatch > matches;
matcher.match( descriptors1, descriptors2, matches );
Mat img_matches;
drawMatches( marker_im, keypoints1, scene_im, keypoints2,
matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
vector<Point2f> obj, scene;
for (int i = 0; i < matches.size(); i++) {
obj.push_back(keypoints1[matches[i].queryIdx].pt);
scene.push_back(keypoints2[matches[i].trainIdx].pt);
}
Mat H;
H = findHomography(obj, scene, CV_RANSAC);
//Get corners of fiducial
vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint(marker_im.cols, 0);
obj_corners[2] = cvPoint(marker_im.cols, marker_im.rows);
obj_corners[3] = cvPoint(0, marker_im.rows);
vector<Point2f> scene_corners(4);
perspectiveTransform(obj_corners, scene_corners, H);
FileStorage fs2("cal.xml", FileStorage::READ);
Mat cameraMatrix, distCoeffs;
fs2["Camera_Matrix"] >> cameraMatrix;
fs2["Distortion_Coefficients"] >> distCoeffs;
Mat rvec, tvec;
//same points as object_corners, just adding z-axis (0)
vector<Point3f> objp(4);
objp[0] = cvPoint3D32f(0,0,0);
objp[1] = cvPoint3D32f(gray.cols, 0, 0);
objp[2] = cvPoint3D32f(gray.cols, gray.rows, 0);
objp[3] = cvPoint3D32f(0, gray.rows, 0);
solvePnPRansac(objp, scene_corners, cameraMatrix, distCoeffs, rvec, tvec );
Mat rotation, viewMatrix(4, 4, CV_64F);
Rodrigues(rvec, rotation);
for(int row=0; row<3; ++row)
{
for(int col=0; col<3; ++col)
{
viewMatrix.at<double>(row, col) = rotation.at<double>(row, col);
}
viewMatrix.at<double>(row, 3) = tvec.at<double>(row, 0);
}
viewMatrix.at<double>(3, 3) = 1.0f;
cout << "rotation: " << rotation << endl;
cout << "viewMatrix: " << viewMatrix << endl;