6
votes

I am testings if a ray intersects with a triangle so for the time being im using the following code to test if there is an intersection between a specified ray which at this point has a direction the midpoint of a random triangle:

Ray<float> *ray = new Ray<float>(Vec3<float>(0), chosenTriangle->GetTriangleMidpoint()); 

Along side is the Vec3 object which im using to store the vector operations:

template<typename T>
class Vec3
{
public:
    T x, y, z;
    Vec3() : x(T(0)), y(T(0)), z(T(0)) { }
    Vec3(T xx) : x(xx), y(xx), z(xx) { }

    Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
    Vec3& normalize()
    {
        T nor2 = length2();
        if (nor2 > 0) {
            T invNor = 1 / sqrt(nor2);
            x *= invNor, y *= invNor, z *= invNor;
        }
        return *this;
    }

    Vec3<T> operator * (const T &f) const { return Vec3<T>(x * f, y * f, z * f); }
    Vec3<T> operator * (const Vec3<T> &v) const { return Vec3<T>(x * v.x, y * v.y, z * v.z); }
    T dot(const Vec3<T> &v) const { return x * v.x + y * v.y + z * v.z; }
    Vec3<T> operator - (const Vec3<T> &v) const { return Vec3<T>(x - v.x, y - v.y, z - v.z); }
    Vec3<T> operator + (const Vec3<T> &v) const { return Vec3<T>(x + v.x, y + v.y, z + v.z); }
    bool operator == (const Vec3<T> &v) { return x == v.x && y == v.y && z == v.z; }
    Vec3<T> operator - () const { return Vec3<T>(-x, -y, -z); }
    T length2() const { return x * x + y * y + z * z; }
    T length() const { return sqrt(length2()); }
    Vec3<T> CrossProduct(Vec3<T> other)
    { 
        return Vec3<T>(y*other.z - other.y*z, x*other.z - z*other.x, x*other.y - y*other.x); 
    }
    friend std::ostream & operator << (std::ostream &os, const Vec3<T> &v)
    {
        os << "[" << v.x << " " << v.y << " " << v.z << "]";
        return os;
    }

the chosen triangle and the ray have the following values where vertA, vertB and vertC are the vertices of the triangle and are found in an object which represents a triangle.

enter image description here

and the code which computes if there is an intersection between a specified ray and an intersection is the followin, this code is found inside the triangle object method where vertA, vertB and vertC are global variables.

bool CheckRayIntersection(Vec3<T> &o, Vec3<T> &d)
{
    Vec3<T> e1 = vertB - vertA;
    Vec3<T> e2 = vertC - vertA;
    Vec3<T> p = d.CrossProduct(e2);
    T a = e1.dot(p);

    if(a == 0)
        return false;

    float f = 1.0f/a;

    Vec3<T> s = o - vertA;
    T u = f * s.dot(p);
    if(u < 0.0f || u > 1.0f)
        return false;

    Vec3<T> q = s.CrossProduct(e1);
    T v = f * d.dot(q);

    if(v < 0.0f || u+v > 1.0f)
        return false;

    T t = f * e2.dot(q);

    return (t >= 0);

}

I still get a false returned from the function, but im presuming it should return a true since a vector passing through the midpoint of the triangle should intersect the triangle at some point. Can anybody enlighten me whats wrong in my code? or if the test is good to return a false

1
Where did vertA, vertB and vertC came from? They are not within function parameters. Meaning those are global variables or you didn't give complete function.SigTerm
@SigTerm didnt give the complete code, they are just the coordinates of the triangle , will updateAdrian De Barro
It seems you are implementing the Möller–Trumbore algorithm. My gut tells me you got one of your Vec3's methods wrong, since your implementation has the shape of the one I referred toRerito
You should normalize e1 and e2 before doing cross product.MichaelCMS
@AdrianDeBarro : really off topic, but check out this raytracing tutorial : flipcode.com/archives/… . Check out the ray / triangle interesection implemented there (it has code as well). You can at least check if your result is consistend with another implementation.MichaelCMS

1 Answers

3
votes

With your data, I managed to get consistent results by having the ray direction normalized (this is the only apparent change in the code).

Here is the code implementation (I used the paper as reference, and it's not very optimized) :

struct quickVect
{

   float x,y,z;
   float l;
 };

#define DOT(v1,v2) (v1.x*v2.x + v1.y*v2.y+v1.z*v2.z)
#define CROSS(rez,v1,v2) \
rez.x  = v1.y*v2.z - v1.z*v2.y; \
rez.y  = v1.z*v2.x - v1.x*v2.z; \
rez.z  = v1.x*v2.y - v1.y*v2.x;

#define SUB(rez,v1,v2) \
rez.x = v1.x-v2.x; \
rez.y = v1.y-v2.y; \
rez.z = v1.z-v2.z;


#define LENGTH(v) (sqrtf(v.x* v.x + v.y*v.y + v.z*v.z))

#define NORMALIZE(v) \
v.l = LENGTH(v); \
v.x = v.x / v.l; \
v.y = v.y / v.l; \
v.z = v.z / v.l;

#define EPSILON 0.000001f

//#define TEST_CULL

bool testIntersection(quickVect& v1, quickVect& v2, quickVect& v3, quickVect& orig,quickVect& dir)
{
 quickVect e1,e2,pvec,qvec,tvec;

 SUB(e1,v2,v1);
 SUB(e2,v3,v1);

 CROSS(pvec,dir,e2);

 NORMALIZE(dir);
 //NORMALIZE(pvec);
 float det = DOT(pvec,e1);
#ifdef TEST_CULL
if (det <EPSILON)
{

    return false;
}
SUB(tvec,orig,v1);
float u = DOT(tvec,pvec);
if (u < 0.0 || u > det)
{

    return false;
}
CROSS(qvec,tvec,e1);
float v = DOT(dir,qvec);
if (v < 0.0f || v + u > det)
{

    return false;
}
#else
 if (det < EPSILON && det > -EPSILON )
 {

     return false;
 }

 float invDet = 1.0f / det;
 SUB(tvec,orig,v1);
// NORMALIZE(tvec);
 float u = invDet * DOT(tvec,pvec);
 if (u <0.0f || u > 1.0f)
 {

     return false;
 }
 CROSS(qvec,tvec,e1);
// NORMALIZE(qvec);
 float v = invDet* DOT(qvec,dir);
 if (v < 0.0f || u+v > 1.0f)
 {

     return false;
 }
#endif
 return true;
}