I can't give you a name but can describe three different algorithms
I'm going to call the set of points you are given "targets" to simplify my solution beacuse I want to call arbitrary locations on the plain "points":
You're going to be doing quite a lot of arithmetic on 2-vectors
my algorithm to partition the polygon is simple: find the nearest target.
the set of points nearest to any target will have straight edges. the vertices will be equidistant to three (or more) of the targets (or be where the edge intersects the boundary polygon),
your algorithm might go like this:
cross the original set of targets with itself twice to produce a set of triples rejecting those that don't copntain three distinct targets.
for each set of three find the point equidistant from all three targets if that point is closer to any other target reject it.
eventually you'll have (at most) n-2 vertices, then you just need to work out how the edges join up. which you can do this by looking at which targets spawned each vertex.
now you need to add the edges which end at infinity take a cross of targets and itself
and find the halfway points between each pair of targets, any points that don't have eactly two nearest targets can be rejected, each of these ponts represents a line (perpendicular bisector) and it will end at one a vertex or at infinity
finally trim the map using the boundary polygon, you may want to drop one of the edges from any fragment that does not contain a target
another way
on the other hand you could use a fractal partitioning scheme to divide the polygon into chunks dividing each chunk smaller until it contains a single polygon, the results will be less aesthetically pleasing but looks weren't a design requirement AFAICT.
eg the fractal mapping used for IP addresses.
then having converted coordinates into numbers into divide this into chunks at convenient points, (IE by dropping unneeded trailing 1's)
another way
measure the extent of set of targets if it is wider than it is high draw a line vertically dividing it in half else draw horizontally.
if the lit hots one of the targets adjust it so that it misses.
repeat for each half until the extet is zero (which means a single point)