This is something of a controversial topic, so let me start by explaining my use case, and then talk about the actual problem.
I find that for a bunch of unsafe things, it's important to make sure that you don't leak memory; this is actually quite easy to do if you start using transmute()
and forget()
. For example, passing a boxed instance to C code for an arbitrary amount of time, then fetching it back out and 'resurrecting it' by using transmute
.
Imagine I have a safe wrapper for this sort of API:
trait Foo {}
struct CBox;
impl CBox {
/// Stores value in a bound C api, forget(value)
fn set<T: Foo>(value: T) {
// ...
}
/// Periodically call this and maybe get a callback invoked
fn poll(_: Box<Fn<(EventType, Foo), ()> + Send>) {
// ...
}
}
impl Drop for CBox {
fn drop(&mut self) {
// Safely load all saved Foo's here and discard them, preventing memory leaks
}
}
To test this is actually not leaking any memory, I want some tests like this:
#[cfg(test)]
mod test {
struct IsFoo;
impl Foo for IsFoo {}
impl Drop for IsFoo {
fn drop(&mut self) {
Static::touch();
}
}
#[test]
fn test_drops_actually_work() {
guard = Static::lock(); // Prevent any other use of Static concurrently
Static::reset(); // Set to zero
{
let c = CBox;
c.set(IsFoo);
c.set(IsFoo);
c.poll(/*...*/);
}
assert!(Static::get() == 2); // Assert that all expected drops were invoked
guard.release();
}
}
How can you create this type of static singleton object?
It must use a Semaphore
style guard lock to ensure that multiple tests do not concurrently run, and then unsafely access some kind of static mutable value.
I thought perhaps this implementation would work, but practically speaking it fails because occasionally race conditions result in a duplicate execution of init
:
/// Global instance
static mut INSTANCE_LOCK: bool = false;
static mut INSTANCE: *mut StaticUtils = 0 as *mut StaticUtils;
static mut WRITE_LOCK: *mut Semaphore = 0 as *mut Semaphore;
static mut LOCK: *mut Semaphore = 0 as *mut Semaphore;
/// Generate instances if they don't exist
unsafe fn init() {
if !INSTANCE_LOCK {
INSTANCE_LOCK = true;
INSTANCE = transmute(box StaticUtils::new());
WRITE_LOCK = transmute(box Semaphore::new(1));
LOCK = transmute(box Semaphore::new(1));
}
}
Note specifically that unlike a normal program where you can be certain that your entry point (main) is always running in a single task, the test runner in Rust does not offer any kind of single entry point like this.
Other, obviously, than specifying the maximum number of tasks; given dozens of tests, only a handful need to do this sort of thing, and it's slow and pointless to limit the test task pool to one just for this one case.