I am following a book "Machine Learning: Hands-On for Developers and Technical Professionals" to create decision tree with WEKA. Though I followed the same process as shown in the book, I am not getting the same decision tree. I am using C4.5 (J48) algorithm.
Data (arff file)
@relation ladygaga
@attribute placement {end_rack, cd_spec, std_rack}
@attribute prominence numeric
@attribute pricing numeric
@attribute eye_level {TRUE, FALSE}
@attribute customer_purchase {yes, no}
@data
end_rack,85,85,FALSE,yes
end_rack,80,90,TRUE,yes
cd_spec,83,86,FALSE,no
std_rack,70,96,FALSE,no
std_rack,68,80,FALSE,no
std_rack,65,70,TRUE,yes
cd_spec,64,65,TRUE,yes
end_rack,72,95,FALSE,yes
end_rack,69,70,FALSE,no
std_rack,75,80,FALSE,no
end_rack,75,70,TRUE,no
cd_spec,72,90,TRUE,no
cd_spec,81,75,FALSE,yes
std_rack,71,91,TRUE,yes
Expected Output
My Output
What am I doing wrong?