I have a list of intervals and I need to return the ones that overlap with an interval passed in a query. What is special is that in a typical query around a third or even half of the intervals will overlap with the one given in the query. Also, the ratio of the shortest interval to the longest is not more than 1:5. I implemented my own interval tree (augmented red-black tree) - I did not want to use existing implementations because I needed support for closed intervals and some special features. I tested the query speed with 6000 queries in a tree with 6000 intervals (so n=6000 and m=3000 (app.)). It turned out that brute force is just as good as using the tree:
Computation time - loop: 125.220461 s
Tree setup: 0.05064 s
Tree Queries: 123.167337 s
Let me use asymptotic analysis. n: number of queries; n: number of intervals; app. n/2: number of intervals returned in a query:
time complexity brute force: n*n
time complexity tree: n*(log(n)+n/2) --> 1/2 nn + nlog(n) --> n*n
So the result is saying that the two should be roughly the same for a large n. Still one would somehow expect the tree to be noticeably faster given the constant 1/2 in front of n*n. So there are three possible reasons I can imagine for the results I got:
a) My implementation is wrong. (Should I be using BFS like below?) b) My implementation is right, but I made things cumbersome for Python so it needs more time to deal with the tree than to deal with brute force. c) everything is OK - it is just how things should behave for a large n
My query function looks like this:
from collections import deque
def query(self,low,high):
result = []
q = deque([self.root]) # this is the root node in the tree
append_result = result.append
append_q = q.append
pop_left = q.popleft
while q:
node = pop_left() # look at the next node
if node.overlap(low,high): # some overlap?
append_result(node.interval)
if node.low != None and low <= node.get_low_max(): # en-q left node
append_q(node.low)
if node.high != None and node.get_high_min() <= high: # en-q right node
append_q(node.high)
I build the tree like this:
def build(self, intervals):
"""
Function which is recursively called to build the tree.
"""
if intervals is None:
return None
if len(intervals) > 2: # intervals is always sorted in increasing order
mid = len(intervals)//2
# split intervals into three parts:
# central element (median)
center = intervals[mid]
# left half (<= median)
new_low = intervals[:mid]
#right half (>= median)
new_high = intervals[mid+1:]
#compute max on the lower side (left):
max_low = max([n.get_high() for n in new_low])
#store min on the higher side (right):
min_high = new_high[0].get_low()
elif len(intervals) == 2:
center = intervals[1]
new_low = [intervals[0]]
new_high = None
max_low = intervals[0].get_high()
min_high = None
elif len(intervals) == 1:
center = intervals[0]
new_low = None
new_high = None
max_low = None
min_high = None
else:
raise Exception('The tree is not behaving as it should...')
return(Node(center, self.build(new_low),self.build(new_high),
max_low, min_high))
EDIT:
A node is represented like this:
class Node:
def __init__(self, interval, low, high, max_low, min_high):
self.interval = interval # pointer to corresponding interval object
self.low = low # pointer to node containing intervals to the left
self.high = high # pointer to node containing intervals to the right
self.max_low = max_low # maxiumum value on the left side
self.min_high = min_high # minimum value on the right side
All the nodes in a subtree can be obtained like this:
def subtree(current):
node_list = []
if current.low != None:
node_list += subtree(current.low)
node_list += [current]
if current.high != None:
node_list += subtree(current.high)
return node_list
p.s. note that by exploiting that there is so much overlap and that all intervals have comparable lenghts, I managed to implement a simple method based on sorting and bisection that completed in 80 s, but I would say this is over-fitting... Amusingly, by using asymptotic analysis, I found it should have app. the same runtime as using the tree...