I am trying to compare the FFT of exp(-t^2) to the function's analytical fourier transform, exp(-(w^2)/4)/sqrt(2), over the frequency range -3 to 3.
I have written the following matlab code and have iterated on it MANY times now with no success.
fs = 100; %sampling frequency
dt = 1/fs;
t = 0:dt:10-dt; %time vector
L = length(t); %number of sample points
%N = 2^nextpow2(L); %necessary?
y = exp(-(t.^2));
Y=dt*ifftshift(abs(fft(y)));
freq = (-L/2:L/2-1)*fs/L; %freq vector
F = (exp(-(freq.^2)/4))/sqrt(2); %analytical solution
%Y_valid_pts = Y(W>=-3 & W<=3); %compare for freq = -3 to 3
%npts = length(Y_valid_pts);
% w = linspace(-3,3,npts);
% Fe = (exp(-(w.^2)/4))/sqrt(2);
error = norm(Y - F) %L2 Norm for error
hold on;
plot(freq,Y,'r');
plot(freq,F,'b');
xlabel('Frequency, w');
legend('numerical','analytic');
hold off;
You can see that right now, I am simply trying to get the two plots to look similar. Eventually, I would like to find a way to do two things: 1) find the minimum sampling rate, 2) find the minimum number of samples, to reach an error (defined as the L2 norm of the difference between the two solutions) of 10^-4.
I feel that this is pretty simple, but I can't seem to even get the two graphs visually agree. If someone could let me know where I'm going wrong and how I can tackle the two points above (minimum sampling frequency and minimum number of samples) I would be very appreciative.
Thanks