I'm building a Media-Library in Dymola similar to Helmholtz-Media but for Ammonia+Water, a mixture. You get a lot of not explicitly solvable equations.
Because of the structure of the Media and Fluid libraries in Modelica I need to be able to get my thermodynamic state from p, h and x. The state-vector consists of d, T, and x.
This is a simple example how to get the state-vector:
model getState_phX
parameter AbsolutePressure p = 500000 "pressure";
parameter SpecificEnthalpy h = 2500000 "enthalpy";
parameter SI.MassFraction x = 0.7 "mole fraction of amonia";
parameter Real[2] start = getStart_Td_phx(p,h,xL);
output ThermodynamicState state(d(start=start[2]),T(start=start[1]),X={(1 - xL),xL});
DerivateFull f = Derivates(state);
equation
p = (1 + f.delta*f.phirdelta)*R*state.T*state.d/molarMass(state);
h = state.T*R*(1 + f.delta*f.phirdelta + f.tau*f.phirtau + f.tau0*f.phi0tau0)/molarMass(state);
end getState_phX;
Please don't mind the parts of the equations. They consist of many parts (sums and log) dependent on the state-vector. This is solved by the solver in Dymola with good start values. But I don't really need all of the 'time-dependent' solving capabilities of Dassl.
Are there build in libraries for solving such stationary equation systems without the solver? Is it possible to make a Function out of this Model using these?
I know I could write a simple solver by hand but for other parts of the Media-Model (VLE) I need highly reliable stationary solver too (but with 4 nonlinear independent equations)
Please tell me if I didn't explain myself clearly. Thank you for the help.