The title might be confusing, here's a particular example to explain myself. Also, I'm not sure how do you call the diagonal that starts in (1,2) and goes onward: (2,3) ; (3,4) and so on. Non-principal, non-main diagonal, not sure at all.
3x3 case
-1 1 0
-1 0 1
0 -1 1
4x4 case
-1 1 0 0
-1 0 1 0
-1 0 0 1
0 -1 1 0
0 -1 0 1
0 0 -1 1
So if the original matrix was a 4x4 (or any other size), I am able to make a matrix the size of the second example. I now have to insert the -1 and 1's in this fashion. This means n-1 number of -1's inserted if j=1, and then, a n-1 number of ones in the non-principal diagonal. When this is done, it's the same but for j=2 and the next non-principal diagonal, and so on.
Thing is, I'm thinking all the time about loops, and too many cases arise, because what I want is to be able to do this for any possible dimension, not for a particular case.
But then I saw this post Obtaining opposite diagonal of a matrix in Matlab
With this answer: A(s:s-1:end-1)
And it seems like a much cleaner way of doing it, since my own way (not finished since I'm not able to figure all the cases) has too many conditions. With a sentence like that, I could choose the diagonal, insert ones, and do it as many times as required, depending of the n dimension.
This leaves the problem of inserting the -1's, but I guess I could manage something.
diag
(with two arguments)? – Luis Mendo