The database and the classification rule, how to calculate precision and recall?
MinSupp=3% và MinConf=30%
No. outlook temperature humidity windy play
1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes
13 overcast hot normal FALSE yes
14 rainy mild high TRUE no
Rule found:
1: (outlook,overcast) -> (play,yes) [Support=0.29 , Confidence=1.00 , Correctly Classify= 3, 7, 12, 13]
2: (humidity,normal), (windy,FALSE) -> (play,yes) [Support=0.29 , Confidence=1.00 , Correctly Classify= 5, 9, 10]
3: (outlook,sunny), (humidity,high) -> (play,no) [Support=0.21 , Confidence=1.00 , Correctly Classify= 1, 2, 8]
4: (outlook,rainy), (windy,FALSE) -> (play,yes) [Support=0.21 , Confidence=1.00 , Correctly Classify= 4]
5: (outlook,sunny), (humidity,normal) -> (play,yes) [Support=0.14 , Confidence=1.00 , Correctly Classify= 11]
6: (outlook,rainy), (windy,TRUE) -> (play,no) [Support=0.14 , Confidence=1.00 , Correctly Classify= 6, 14]
Thanks.