i am new to weka data mining and evaluation.So far i have read data set.I want to predict my data based on data set.As a example i have used weather data set provided by weka tool.So i have used Naive Bayes Classifier for classification.Now i got probability values for my attributes.Now i want to predict data using data-set. As example when i give sunny,70,85,TRUE then i want to get probability of class value.So far i have done this part.Can anyone tell me how to used Naive Bayes classifier for data evaluation.
public static void ArfLoader(){
ArffLoader loader = new ArffLoader();
try {
loader.setFile(new File("sampleData.txt"));
Instances structure = loader.getStructure();
structure.setClassIndex(structure.numAttributes() - 1);
NaiveBayesUpdateable nb = new NaiveBayesUpdateable();
nb.buildClassifier(structure);
Instance current;
while ((current = loader.getNextInstance(structure)) != null){
nb.updateClassifier(current);
}
System.out.print(nb);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
Then this is my data set.
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature real
@attribute humidity real
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}
@data
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE,no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no