Tags of tagged unions ought to be first-class values, and with a wee bit of effort, they are.
Jiggery-pokery alert:
{-# LANGUAGE GADTs, DataKinds, KindSignatures,
TypeFamilies, PolyKinds, FlexibleInstances,
PatternSynonyms
#-}
Step one: define type-level versions of the tags.
data TagType = EmptyTag | SingleTag | PairTag | LotsTag
Step two: define value-level witnesses for the representability of the type-level tags. Richard Eisenberg's Singletons library will do this for you. I mean something like this:
data Tag :: TagType -> * where
EmptyT :: Tag EmptyTag
SingleT :: Tag SingleTag
PairT :: Tag PairTag
LotsT :: Tag LotsTag
And now we can say what stuff we expect to find associated with a given tag.
type family Stuff (t :: TagType) :: * where
Stuff EmptyTag = ()
Stuff SingleTag = Int
Stuff PairTag = (Int, Int)
Stuff LotsTag = [Int]
So we can refactor the type you first thought of
data NumCol :: * where
(:&) :: Tag t -> Stuff t -> NumCol
and use PatternSynonyms
to recover the behaviour you had in mind:
pattern Empty = EmptyT :& ()
pattern Single i = SingleT :& i
pattern Pair i j = PairT :& (i, j)
pattern Lots is = LotsT :& is
So what's happened is that each constructor for NumCol
has turned into a tag indexed by the kind of tag it's for. That is, constructor tags now live separately from the rest of the data, synchronized by a common index which ensures that the stuff associated with a tag matches the tag itself.
But we can talk about tags alone.
data Ex :: (k -> *) -> * where -- wish I could say newtype here
Witness :: p x -> Ex p
Now, Ex Tag
, is the type of "runtime tags with a type level counterpart". It has an Eq
instance
instance Eq (Ex Tag) where
Witness EmptyT == Witness EmptyT = True
Witness SingleT == Witness SingleT = True
Witness PairT == Witness PairT = True
Witness LotsT == Witness LotsT = True
_ == _ = False
Moreover, we can easily extract the tag of a NumCol
.
numColTag :: NumCol -> Ex Tag
numColTag (n :& _) = Witness n
And that allows us to match your specification.
filter ((Witness PairT ==) . numColTag) :: [NumCol] -> [NumCol]
Which raises the question of whether your specification is actually what you need. The point is that detecting a tag entitles you an expectation of that tag's stuff. The output type [NumCol]
doesn't do justice to the fact that you know you have just the pairs.
How might you tighten the type of your function and still deliver it?