Is there anything in scikit learn that can help me with the following?
I need a Bayesian network that is capable of taking continuous valued inputs and training against continuous valued targets. I then want to feed in new, previously unseen continuous inputs and receive estimates of the target values. Preferably with a way to measure confidence of the predictions. (PDFs perhaps?)
I am uncertain whether this would be considered a Naive Bayes Classifier or not.
I keep looking at GaussianNB but I just cannot see how it could be used in this way.
I'd like one that support "independence of irrelevant alternatives"
Any advice is greatly appreciated.