0
votes

I have a training set where the input vectors are speed, acceleration and turn angle change. Output is a crisp class- an activity state from the given set {rest, walk, run}. e.g- say for input vectors [3.1 1.2 2]-->run ; [2.1 1 1]-->walk and so on.

I am using weka to develop a Neural Network model. The output I am defining as crisp ones (or rather qualitative ones in words- categorical values). After training the model, the model can fairly classify on test data.

I was wondering how the internal process (mapping function) is taking place? Is the qualitative output states are getting some nominal value inside the model and after processing it is again getting converted to the categorical data? because a NN model cannot map float input values to a categorical data through hidden neurons, so what is actually happening, although the model is working fine.

If the model converts the categorical outputs into nominal ones and then start processing then on what basis it converts the categorical value into some arbitrary numerical values?

2

2 Answers

0
votes

Yes, categorical values are usually being converted to numbers, and the networks learn to associate input data with these numbers. However these numbers are often further encoded, not to use only single output neuron. The most common way to do it, for unordered labels, is to add dummy output neurons dedicated to each category and use 1-of-C encoding, with 0.1 and 0.9 as target values. Output is interpreted using the Winner-take-all paradigm.

Using only one neuron and encoding categories with different numbers for unordered labels often leads to problems - as the network will treat middle categories as "averages" of the boundary categories. This however may sometimes be desired, if you have ordered categorical data.

You can find very good explanation of this issue in this part of the online Neural Network FAQ.

0
votes

The neural net's computations all take place on continuous values. To do multiclass classification with discrete output, its final layer produces a vector of such values, one for each class. To make a discrete class prediction, take the index of the maximum element in that vector.

So if the final layer in a classification network for four classes predicts [0 -1 2 1], then the third element of the vector is the largest and the third class is selected. Often, these values are also constrained to form a probability distribution by means of a softmax activation function.