You should investigate so-called metacompilers, which essentially compile EBNF into recursive descent parsers. How they do it is exactly the answer your question.
(Its pretty straightfoward, but good to understand the details).
A really wonderful paper is the "MetaII" paper by Val Schorre. This is metacompiler technology from honest-to-God 1964. In 10 pages, he shows you how to build a metacompiler, and provides not just that, but another compiler too and the output of both!. There's an astonishing moment that you come too if you go build one of these, where you realized how the meta-compiler compiles itself using its own grammar. This moment got me
hooked on compiler back in about 1970 when I first tripped over this paper. This is one of those computer science papers that everybody in the software business should read.
James Neighbors (the inventor of the term "domain" in software engineering, and builder of the first program transformation system [based on these metacompilers] has a great online MetaII tutorial, for those of you that don't want the do-it-from-scratch experience. (I have nothing to do with this except that Neighbors and I were undergraduates together).
Both ways are a fine way to learn about metacompilers and generating parsers from EBNF.
The key ideas are that the left hand side of a rule creates a function that parses that nonterminal and returns true if match and advances the input stream; false if no match and the input stream doesn't advance.
The contents of the function is determined by the right hand side. Literal tokens are matched directly.
Nonterminals cause calls to other functions generated for the other rules.
Kleene* maps to while loops, alternations map to conditional branches. What EBNF doesn't address,
and the metacompilers do, is how does parsing do anyting other than saying "matched" or not?
The secret is weaving output operations into the EBNF. The MetaII paper makes all this crystal clear.