Given Multiple (N) lines in 3d space, find the point minimizing the distance to all lines.
- Given that the Shortest distance between a line [aX + b] and a point [P] will be on the perpendicular line [aX+b]–[P] I can express the minimal squared distance as the sum of squared line distances, eg. ([aX+b]–[P])^2 +…+ ([aX+b]n–[P])^2 .
- Since the lines are perpendicular I can use Dot Product to express [P] in the line terms
I have considered using Least Squares for estimating the point minimizing the distance, the problem is that the standard least squares will approximate the best fitting line/curve given a set of points, What I need is the opposite, given a set of lines estimate the best fitting point.
How should this be approached ?