1) The most common use of goto that I know of is emulating exception handling in languages that don't offer it, namely in C. (The code given by Nuclear above is just that.) Look at the Linux source code and you'll see a bazillion gotos used that way; there were about 100,000 gotos in Linux code according to a quick survey conducted in 2013: http://blog.regehr.org/archives/894. Goto usage is even mentioned in the Linux coding style guide: https://www.kernel.org/doc/Documentation/CodingStyle. Just like object-oriented programming is emulated using structs populated with function pointers, goto has its place in C programming. So who is right: Dijkstra or Linus (and all Linux kernel coders)? It's theory vs. practice basically.
There is however the usual gotcha for not having compiler-level support and checks for common constructs/patterns: it's easier to use them wrong and introduce bugs without compile-time checks. Windows and Visual C++ but in C mode offer exception handling via SEH/VEH for this very reason: exceptions are useful even outside OOP languages, i.e. in a procedural language. But the compiler can't always save your bacon, even if it offers syntactic support for exceptions in the language. Consider as example of the latter case the famous Apple SSL "goto fail" bug, which just duplicated one goto with disastrous consequences (https://www.imperialviolet.org/2014/02/22/applebug.html):
if (something())
goto fail;
goto fail; // copypasta bug
printf("Never reached\n");
fail:
// control jumps here
You can have exactly the same bug using compiler-supported exceptions, e.g. in C++:
struct Fail {};
try {
if (something())
throw Fail();
throw Fail(); // copypasta bug
printf("Never reached\n");
}
catch (Fail&) {
// control jumps here
}
But both variants of the bug can be avoided if the compiler analyzes and warns you about unreachable code. For example compiling with Visual C++ at the /W4 warning level finds the bug in both cases. Java for instance forbids unreachable code (where it can find it!) for a pretty good reason: it's likely to be a bug in the average Joe's code. As long as the goto construct doesn't allow targets that the compiler can't easily figure out, like gotos to computed addresses(**), it's not any harder for the compiler to find unreachable code inside a function with gotos than using Dijkstra-approved code.
(**) Footnote: Gotos to computed line numbers are possible in some versions of Basic, e.g. GOTO 10*x where x is a variable. Rather confusingly, in Fortran "computed goto" refers to a construct that is equivalent to a switch statement in C. Standard C doesn't allow computed gotos in the language, but only gotos to statically/syntactically declared labels. GNU C however has an extension to get the address of a label (the unary, prefix && operator) and also allows a goto to a variable of type void*. See https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html for more on this obscure sub-topic. The rest of this post ins't concerned with that obscure GNU C feature.
Standard C (i.e. not computed) gotos are not usually the reason why unreachable code can't be found at compile time. The usual reason is logic code like the following. Given
int computation1() {
return 1;
}
int computation2() {
return computation1();
}
It's just as hard for a compiler to find unreachable code in any of the following 3 constructs:
void tough1() {
if (computation1() != computation2())
printf("Unreachable\n");
}
void tough2() {
if (computation1() == computation2())
goto out;
printf("Unreachable\n");
out:;
}
struct Out{};
void tough3() {
try {
if (computation1() == computation2())
throw Out();
printf("Unreachable\n");
}
catch (Out&) {
}
}
(Excuse my brace-related coding style, but I tried to keep the examples as compact as possible.)
Visual C++ /W4 (even with /Ox) fails to find unreachable code in any of these, and as you probably know the problem of finding unreachable code is undecidable in general. (If you don't believe me about that: https://www.cl.cam.ac.uk/teaching/2006/OptComp/slides/lecture02.pdf)
As a related issue, the C goto can be used to emulate exceptions only inside the body of a function. The standard C library offers a setjmp() and longjmp() pair of functions for emulating non-local exits/exceptions, but those have some serious drawbacks compared to what other languages offer. The Wikipedia article http://en.wikipedia.org/wiki/Setjmp.h explains fairly well this latter issue. This function pair also works on Windows (http://msdn.microsoft.com/en-us/library/yz2ez4as.aspx), but hardly anyone uses them there because SEH/VEH is superior. Even on Unix, I think setjmp and longjmp are very seldom used.
2) I think the second most common use of goto in C is implementing multi-level break or multi-level continue, which is also a fairly uncontroversial use case. Recall that Java doesn't allow goto label, but allows break label or continue label. According to http://www.oracle.com/technetwork/java/simple-142616.html, this is actually the most common use case of gotos in C (90% they say), but in my subjective experience, system code tends to use gotos for error handling more often. Perhaps in scientific code or where the OS offers exception handling (Windows) then multi-level exits are the dominant use case. They don't really give any details as to the context of their survey.
Edited to add: it turns out these two use patterns are found in the C book of Kernighan and Ritchie, around page 60 (depending on edition). Another thing of note is that both use cases involve only forward gotos. And it turns out that MISRA C 2012 edition (unlike the 2004 edition) now permits gotos, as long as they are only forward ones.