Is there a standard way to make a "pure virtual function" in Swift, ie. one that must be overridden by every subclass, and which, if it is not, causes a compile time error?
8 Answers
You have two options:
1. Use a Protocol
Define the superclass as a Protocol instead of a Class
Pro: Compile time check for if each "subclass" (not an actual subclass) implements the required method(s)
Con: The "superclass" (protocol) cannot implement methods or properties
2. Assert in the super version of the method
Example:
class SuperClass {
func someFunc() {
fatalError("Must Override")
}
}
class Subclass : SuperClass {
override func someFunc() {
}
}
Pro: Can implement methods and properties in superclass
Con: No compile time check
The following allows to inherit from a class and also to have the protocol's compile time check :)
protocol ViewControllerProtocol {
func setupViews()
func setupConstraints()
}
typealias ViewController = ViewControllerClass & ViewControllerProtocol
class ViewControllerClass : UIViewController {
override func viewDidLoad() {
self.setup()
}
func setup() {
guard let controller = self as? ViewController else {
return
}
controller.setupViews()
controller.setupConstraints()
}
//.... and implement methods related to UIViewController at will
}
class SubClass : ViewController {
//-- in case these aren't here... an error will be presented
func setupViews() { ... }
func setupConstraints() { ... }
}
There isn't any support for abstract class/ virtual functions, but you could probably use a protocol for most cases:
protocol SomeProtocol {
func someMethod()
}
class SomeClass: SomeProtocol {
func someMethod() {}
}
If SomeClass doesn't implement someMethod, you'll get this compile time error:
error: type 'SomeClass' does not conform to protocol 'SomeProtocol'
Another workaround, if you don't have too many "virtual" methods, is to have the subclass pass the "implementations" into the base class constructor as function objects:
class MyVirtual {
// 'Implementation' provided by subclass
let fooImpl: (() -> String)
// Delegates to 'implementation' provided by subclass
func foo() -> String {
return fooImpl()
}
init(fooImpl: (() -> String)) {
self.fooImpl = fooImpl
}
}
class MyImpl: MyVirtual {
// 'Implementation' for super.foo()
func myFoo() -> String {
return "I am foo"
}
init() {
// pass the 'implementation' to the superclass
super.init(myFoo)
}
}
You can use protocol vs assertion as suggested in answer here by drewag
.
However, example for the protocol is missing. I am covering here,
Protocol
protocol SomeProtocol {
func someMethod()
}
class SomeClass: SomeProtocol {
func someMethod() {}
}
Now every subclasses are required to implement the protocol which is checked in compile time. If SomeClass doesn't implement someMethod, you'll get this compile time error:
error: type 'SomeClass' does not conform to protocol 'SomeProtocol'
Note: this only works for the topmost class that implements the protocol. Any subclasses can blithely ignore the protocol requirements. – as commented by memmons
Assertion
class SuperClass {
func someFunc() {
fatalError("Must Override")
}
}
class Subclass : SuperClass {
override func someFunc() {
}
}
However, assertion will work only in runtime.
You can achieve it by passing function into initializer.
For example
open class SuperClass {
private let abstractFunction: () -> Void
public init(abstractFunction: @escaping () -> Void) {
self.abstractFunction = abstractFunction
}
public func foo() {
// ...
abstractFunction()
}
}
public class SubClass: SuperClass {
public init() {
super.init(
abstractFunction: {
print("my implementation")
}
)
}
}
You can extend it by passing self as the parameter:
open class SuperClass {
private let abstractFunction: (SuperClass) -> Void
public init(abstractFunction: @escaping (SuperClass) -> Void) {
self.abstractFunction = abstractFunction
}
public func foo() {
// ...
abstractFunction(self)
}
}
public class SubClass: SuperClass {
public init() {
super.init(
abstractFunction: {
(_self: SuperClass) in
let _self: SubClass = _self as! SubClass
print("my implementation")
}
)
}
}
Pro:
- Compile time check for if each subclassimplements the required method(s)
- Can implement methods and properties in superclass
- Note that you can't pass self to the function so you won't get memory leak.
Con:
- It's not the prettiest code
- You can't use it for the classes with
required init
Being new to iOS development, I'm not entirely sure when this was implemented, but one way to get the best of both worlds is to implement an extension for a protocol:
protocol ThingsToDo {
func doThingOne()
}
extension ThingsToDo {
func doThingTwo() { /* Define code here */}
}
class Person: ThingsToDo {
func doThingOne() {
// Already defined in extension
doThingTwo()
// Rest of code
}
}
The extension is what allows you to have the default value for a function while the function in the regular protocol still provides a compile time error if not defined
protocol
s (compared tointerface
s in Java) If you need to use them like abstract methods have look at this question/answer: stackoverflow.com/a/39038828/2435872 – jboi