In your example, parLapply is iterating over a list of matrices, and passing those matrices as the argument to "myfunction". However, "myfunction" seems to expect its argument to be a list of two matrices, and so an error occurs. I can reproduce that error with:
> E <- matrix(0, 4, 4)
> E[[1]][,1]
Error in E[[1]][, 1] : incorrect number of dimensions
I'm not sure what you're really trying to do, but with the current implementation of "myfunction", I would expect you to call parLapply with a list of lists containing two matrices, such as:
TheDataList <- list(list(A,B), list(C,D), list(E,F), list(G,H))
Passing this as the second argument to parLapply would result in "myfunction" being called four times, each time with a list containing two matrices.
But your example has another problem. It looks like you expect parLapply to modify the matrix "M" as a side-effect, but it can't. I think you should change "myfunction" to return a matrix. parLapply will return the matrices in a list which you can then bind together into the desired result.
Update
From your comment, I now believe that you essentially want to parallelize "myfunction". Here's my attempt to do that:
library(parallel)
cl <- makeCluster(4)
myfunction <- function(Exy) {
iM <- integer(nrow(Exy))
for (k in 1:nrow(Exy)) {
distance <- sqrt((Txy[,1] - Exy[k,2])^2 + (Txy[,2] - Exy[k,1])^2)
iM[k] <- which.min(distance)
}
iM
}
# Random example data for testing
T <- matrix(rnorm(150), 10)
E <- matrix(rnorm(120), 10)
# Only export the first two columns to T to the workers
Txy <- T[,1:2]
clusterExport(cl, c('Txy'))
# Parallelize "myfunction" by calling it in parallel on block rows of "E".
ExyList <- parallel:::splitRows(E[,1:2], length(cl))
iM <- do.call('c', clusterApply(cl, ExyList, myfunction))
# Update "M" using data from "T" indexed by "iM"
M <- matrix(0, nrow(T), 9) # more fake data
for (k in iM) {
M[k,4:9] <- T[k, 1:6]
}
print(M)
stopCluster(cl)
Notes:
- I vectorized myfunction which should make it more efficient. Hopefully it's nearly correct.
- I also modified myfunction to return a vector of indices into "T" to reduce the amount of data sent back to the master.
- The splitRows function from the parallel package is used to split the first two columns of "E" into a list of submatrices.
- splitRows isn't exported by parallel, so I used ':::'. If this offends you, then use the splitRows function from snow which is exported.
- The first two columns of "T" are exported to each of the workers since each task requires the entire first two columns.
- clusterApply is used rather than parLapply since we need to iterate over submatrices of E.