In this exercise I have a set of data that present an exponential curve and I want to fit them exponentially and get the values of a and b. I used the following code and it worked with the data I have.
"trail.m" file:
%defining the data used
load trialforfitting.txt;
xdata= trialforfitting(:,1);
ydata= trialforfitting(:,2);
%calling the "fitcurvedemo" function
[estimates, model] = fitcurvedemo(xdata,ydata)
disp(sse);
plot(xdata, ydata, 'o'); %Data curve
hold on
[sse, FittedCurve] = model(estimates);
plot(xdata, FittedCurve, 'r')%Fitted curve
xlabel('Voltage (V)')
ylabel('Current (A)')
title('Exponential Fitting to IV curves');
legend('data', ['Fitting'])
hold off
"fitcurvedemo.m" file:
function [estimates, model] = fitcurvedemo(xdata, ydata)
%Call fminsearch with a random starting point.
start_point = rand(1, 2);
model = @expfun;
estimates = fminsearch(model, start_point);
%"expfun" accepts curve parameters as inputs, and outputs
%the sum of squares error [sse] expfun is a function handle;
%a value that contains a matlab object methods and the constructor
%"FMINSEARCH" only needs sse
%estimate returns the value of A and lambda
%model computes the exponential function
function [sse, FittedCurve] = expfun(params)
A = params(1);
lambda = params(2);
%exponential function model to fit
FittedCurve = A .* exp(lambda * xdata);
ErrorVector = FittedCurve - ydata;
%output of the expfun function [sum of squares of error]
sse = sum(ErrorVector .^ 2);
end
end
I have a new set of data that doesn't work with this code and give the appropriate exponential fit for the data curve plotted.
(x,a*exp(b*x))
? In this case I would suggest standard methods, minimizing the least-square error by Levenberg-Marquardt, Gradient Descent, Gauß-Newton. If you want to save time and if it is available use the optimization toolbox's functionlsqnonlin
. Example:data_x = [0,1,2,3]; data_y = [0.5,1.5,4.5,13.5]; residua = @(x) x(1) * exp(data_x * x(2)) - data_y; lsqnonlin(residua,[1,1])
– matheburg