My problem is with the predict() function, its structure, and plotting the predictions.
Using the predictions coming from my model, I would like to visualize how my significant factors (and their interaction) affect the probability of my response variable.
My model:
m1 <-glm ( mating ~ behv * pop +
I(behv^2) * pop + condition,
data=data1, family=binomial(logit))
mating: individual has mated or not (factor, binomial: 0,1)
pop: population (factor, 4 levels)
behv: behaviour (numeric, scaled & centered)
condition: relative fat content (numeric, scaled & centered)
Significant effects after running the glm:
pop1
condition
behv*pop2
behv^2*pop1
Although I have read the help pages, previous answers to similar questions, tutorials etc., I couldn't figure out how to structure the newdata= part in the predict() function. The effects I want to visualise (given above) might give a clue of what I want: For the "behv*pop2" interaction, for example, I would like to get a graph that shows how the behaviour of individuals from population-2 can influence whether they will mate or not (probability from 0 to 1).
