Update.
@tom10 gave a thorough survey of autocorrelation and explained why the first bump in the autocorrelation could give the period of the periodic signal.
I tried both approaches, FFT as well as autocorrelation. Their results agree, although I would prefer FFT over autocorrelation since it gives you the period more directly.
When using autocorrelation, we simply determine the coordinate of the first peak. A manual inspection of the autocorrelation graph will reveal if you have the 'right' peak, since you can notice the period (although for primes above 7 this becomes less clear). I'm sure you could also work out a simple algorithm which calculates the 'right' peak. Perhaps someone could elaborate on some simple algortihm which does the job?
See, for instance, the following plot of the sequences next to their autocorrelation.
Code:
1 # Plotting sequences satisfying, x_{i+1} = p-1 - (p*i-1 mod x_i)
2 # with p prime and x_0 = 1, next to their autocorrelation.
3
4 from __future__ import print_function
5 import numpy as np
6 from matplotlib import pyplot as plt
7
8 # The length of the sequences.
9 seq_length = 10000
10
11 upperbound_primes = 12
12
13 # Computing a list of prime numbers up to n
14 def primes(n):
15 sieve = [True] * n
16 for i in xrange(3,int(n**0.5)+1,2):
17 if sieve[i]:
18 sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
19 return [2] + [i for i in xrange(3,n,2) if sieve[i]]
20
21 # The list of prime numbers up to upperbound_primes
22 p = primes(upperbound_primes)
23
24 # The amount of primes numbers
25 no_primes = len(p)
26
27 # Generate the sequence for the prime number p
28 def sequence(p):
29 x = np.empty(seq_length)
30 x[0] = 1
31 for i in range(1,seq_length):
32 x[i] = p - 1 - (p * (i-1) - 1) % x[i-1]
33 return x
34
35 # List with the sequences.
36 seq = [sequence(i) for i in p]
37
38 # Autocorrelation function.
39 def autocor(x):
40 result = np.correlate(x,x,mode='full')
41 return result[result.size/2:]
42
43 fig = plt.figure("The sequences next to their autocorrelation")
44 plt.suptitle("The sequences next to their autocorrelation")
45
46 # Proper spacing between subplots.
47 fig.subplots_adjust(hspace=1.2)
48
49 # Set up pyplot to use TeX.
50 plt.rc('text',usetex=True)
51 plt.rc('font',family='serif')
52
53 # Maximize plot window by command.
54 mng = plt.get_current_fig_manager()
55 mng.resize(*mng.window.maxsize())
56
57 k = 0
58 for s in seq:
59 k = k + 1
60 fig.add_subplot(no_primes,2,2*(k-1)+1)
61 plt.title("Sequence of the prime %d" % p[k-1])
62 plt.plot(s)
63 plt.xlabel(r"Index $i$")
64 plt.ylabel(r"Sequence number $x_i$")
65 plt.xlim(0,100)
66
67 # Constrain the number of ticks on the y-axis, for clarity.
68 plt.locator_params(axis='y',nbins=4)
69
70 fig.add_subplot(no_primes,2,2*k)
71 plt.title(r"Autocorrelation of the sequence $^{%d}x$" % p[k-1])
72 plt.plot(autocor(s))
73 plt.xlabel(r"Index $i$")
74 plt.xticks
75 plt.ylabel("Autocorrelation")
76
77 # Proper scaling of the y-axis.
78 ymin = autocor(s)[1]-int(autocor(s)[1]/10)
79 ymax = autocor(s)[1]+int(autocor(s)[1]/10)
80 plt.ylim(ymin,ymax)
81 plt.xlim(0,500)
82
83 plt.locator_params(axis='y',nbins=4)
84
85 # Use scientific notation when 0< t < 1 or t > 10
86 plt.ticklabel_format(style='sci',axis='y',scilimits=(0,1))
87
88 plt.show()
When using FFT, we Fourier transform our sequence and look for the first peak. The coordinate of this first peak, gives the frequency which represents our signal the coarsest. This will give our period since the coarsest frequency is the frequency by which our sequence (ideally) oscillates.
See the following plot of the sequences next to their Fourier transforms.
Code:
1 # Plotting sequences satisfying, x_{i+1} = p-1 - (p*i-1 mod x_i)
2 # with p prime and x_0 = 1, next to their Fourier transforms.
3
4 from __future__ import print_function
5 import numpy as np
6 from matplotlib import pyplot as plt
7
8 # The length of the sequences.
9 seq_length = 10000
10
11 upperbound_primes = 12
12
13 # Computing a list of prime numbers up to n
14 def primes(n):
15 sieve = [True] * n
16 for i in xrange(3,int(n**0.5)+1,2):
17 if sieve[i]:
18 sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
19 return [2] + [i for i in xrange(3,n,2) if sieve[i]]
20
21 # The list of prime numbers up to upperbound_primes
22 p = primes(upperbound_primes)
23
24 # The amount of primes numbers
25 no_primes = len(p)
26
27 # Generate the sequence for the prime number p
28 def sequence(p):
29 x = np.empty(seq_length)
30 x[0] = 1
31 for i in range(1,seq_length):
32 x[i] = p - 1 - (p * (i-1) - 1) % x[i-1]
33 return x
34
35 # List with the sequences.
36 seq = [sequence(i) for i in p]
37
38 fig = plt.figure("The sequences next to their FFT")
39 plt.suptitle("The sequences next to their FFT")
40
41 # Proper spacing between subplots.
42 fig.subplots_adjust(hspace=1.2)
43
44 # Set up pyplot to use TeX.
45 plt.rc('text',usetex=True)
46 plt.rc('font',family='serif')
47
48
49 # Maximize plot window by command.
50 mng = plt.get_current_fig_manager()
51 mng.resize(*mng.window.maxsize())
52
53 k = 0
54 for s in seq:
55 f = np.fft.rfft(s)
56 f[0] = 0
57 freq = np.fft.rfftfreq(seq_length)
58 k = k + 1
59 fig.add_subplot(no_primes,2,2*(k-1)+1)
60 plt.title("Sequence of the prime %d" % p[k-1])
61 plt.plot(s)
62 plt.xlabel(r"Index $i$")
63 plt.ylabel(r"Sequence number $x_i$")
64 plt.xlim(0,100)
65
66 # Constrain the number of ticks on the y-axis, for clarity.
67 plt.locator_params(nbins=4)
68
69 fig.add_subplot(no_primes,2,2*k)
70 plt.title(r"FFT of the sequence $^{%d}x$" % p[k-1])
71 plt.plot(freq,abs(f))
72 plt.xlabel("Frequency")
73 plt.ylabel("Amplitude")
74 plt.locator_params(nbins=4)
75
76 # Use scientific notation when 0 < t < 0 or t > 10
77 plt.ticklabel_format(style='sci',axis='y',scilimits=(0,1))
78
79 plt.show()
To see why the FFT method is more convenient then autocorrelation notice that we have a clear algorithm of determining the period: find the first peak of the Fourier transform. For a sufficient number of samples this always works.
See the following table, attained by the FFT method, which agrees with the autocorrelation method.
prime frequency period
2 0.00 1000.00
3 0.50 2.00
5 0.08 12.00
7 0.02 59.88
11 0.00 1000.00
The following code implements the algorithm, printing a table specifying the frequency and period of the sequences per prime number.
1 # Print a table of periods, determined by the FFT method,
2 # of sequences satisfying,
3 # x_{i+1} = p-1 - (p*i-1 mod x_i) with p prime and x_0 = 1.
4
5 from __future__ import print_function
6 import numpy as np
7 from matplotlib import pyplot as plt
8
9 # The length of the sequences.
10 seq_length = 10000
11
12 upperbound_primes = 12
13
14 # Computing a list of prime numbers up to n
15 def primes(n):
16 sieve = [True] * n
17 for i in xrange(3,int(n**0.5)+1,2):
18 if sieve[i]:
19 sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
20 return [2] + [i for i in xrange(3,n,2) if sieve[i]]
21
22 # The list of prime numbers up to upperbound_primes
23 p = primes(upperbound_primes)
24
25 # The amount of primes numbers
26 no_primes = len(p)
27
28 # Generate the sequence for the prime number p
29 def sequence(p):
30 x = np.empty(seq_length)
31 x[0] = 1
32 for i in range(1,seq_length):
33 x[i] = p - 1 - (p * (i-1) - 1) % x[i-1]
34 return x
35
36 # List with the sequences.
37 seq = [sequence(i) for i in p]
38
39 # Function that finds the first peak.
40 # Assumption: seq_length >> 10 so the Fourier transformed
41 # signal is sufficiently smooth.
42 def firstpeak(x):
43 for i in range(10,len(x)-1):
44 if x[i+1] < x[i]:
45 return i
46 return len(x)-1
47
48 k = 0
49 for s in seq:
50 f = np.fft.rfft(s)
51 freq = np.fft.rfftfreq(seq_length)
52 k = k + 1
53 if k == 1:
54 print("prime \t frequency \t period")
55 print(p[k-1],'\t %.2f' % float(freq[firstpeak(abs(f))]), \
56 '\t\t %.2f' % float(1/freq[firstpeak(abs(f))]))
I used 10000 samples (seq_length) in all the above code. As we increase the number of samples the periods are seen to converge to a certain integral value (Using the FFT method).
The FFT method seems to me like an ideal tool to determine periods in algorithmic signals, one only being limited by how high a sample number your equipment can handle.