I have a training dataset that has 3233 rows and 62 columns. The independent variable is Happy (train$Happy), which is a binary variable. The other 61 columns are categorical independent variables.
I've created a logistic regression model as follows:
logModel <- glm(Happy ~ ., data = train, family = binary)
However, I want to reduce the number of independent variables that go into the model, perhaps down to 20 or so. I would like to start by getting rid of colinear categorical variables.
Can someone shed some light on how to determine which categorical variables are colinear and what threshold that I should use when removing a variable from a model?
Thank you!