I've put together a stereo cam rig and am having trouble using it to produce a good disparity map. Here's an example of two rectified images and the disparity map I produced with them:
As you can see, the results are pretty bad. Changing the StereoBM's settings doesn't change much.
The setup
- Both cameras are the same model and connect to my computer with USB.
- They are fixed to a rigid wooden board so that they don't move. I aligned them as best I could, but of course it's not perfect. They are unable to move, so their positions during and after calibration are the same.
- I calibrated the stereo pair using OpenCV and am using OpenCV's
StereoBM
class to produce the disparity map. - It's probably not that relevant, but I'm coding in Python.
Problems I could imagine
I'm doing this for the first time, so I'm far from being an expert, but I'm guessing the problem is in the calibration or in the stereo rectification, rather than the computation of the disparity map. I've tried all permutations of settings for the StereoBM
and, although I get different results, they're all like the disparity map shown above: Patches of black and white.
This idea is further supported by the fact that, as I understand it, stereo rectification should align all points on each picture so that they are connected by a straight (in my case horizontal) line. If I examine both rectified pictures next to each other, it's imediately obvious that this isn't the case. Corresponding points are much higher on the right picture than on the left. I'm not sure whether the calibration or the rectification is the problem, though.
The code
The actual code is wrapped up in objects - in case you're interested in seeing it in its entirety, it's available on GitHub. Here is a simplified example of what's actually run (of course in the real code I calibrate using more than just 2 pictures):
import cv2
import numpy as np
## Load test images
# TEST_IMAGES is a list of paths to test images
input_l, input_r = [cv2.imread(image, cv2.CV_LOAD_IMAGE_GRAYSCALE)
for image in TEST_IMAGES]
image_size = input_l.shape[:2]
## Retrieve chessboard corners
# CHESSBOARD_ROWS and CHESSBOARD_COLUMNS are the number of inside rows and
# columns in the chessboard used for calibration
pattern_size = CHESSBOARD_ROWS, CHESSBOARD_COLUMNS
object_points = np.zeros((np.prod(pattern_size), 3), np.float32)
object_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
# SQUARE_SIZE is the size of the chessboard squares in cm
object_points *= SQUARE_SIZE
image_points = {}
ret, corners_l = cv2.findChessboardCorners(input_l, pattern_size, True)
cv2.cornerSubPix(input_l, corners_l,
(11, 11), (-1, -1),
(cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
30, 0.01))
image_points["left"] = corners_l.reshape(-1, 2)
ret, corners_r = cv2.findChessboardCorners(input_r, pattern_size, True)
cv2.cornerSubPix(input_r, corners_r,
(11, 11), (-1, -1),
(cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
30, 0.01))
image_points["right"] = corners_r.reshape(-1, 2)
## Calibrate cameras
(cam_mats, dist_coefs, rect_trans, proj_mats, valid_boxes,
undistortion_maps, rectification_maps) = {}, {}, {}, {}, {}, {}, {}
criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS,
100, 1e-5)
flags = (cv2.CALIB_FIX_ASPECT_RATIO + cv2.CALIB_ZERO_TANGENT_DIST +
cv2.CALIB_SAME_FOCAL_LENGTH)
(ret, cam_mats["left"], dist_coefs["left"], cam_mats["right"],
dist_coefs["right"], rot_mat, trans_vec, e_mat,
f_mat) = cv2.stereoCalibrate(object_points,
image_points["left"], image_points["right"],
image_size, criteria=criteria, flags=flags)
(rect_trans["left"], rect_trans["right"],
proj_mats["left"], proj_mats["right"],
disp_to_depth_mat, valid_boxes["left"],
valid_boxes["right"]) = cv2.stereoRectify(cam_mats["left"],
dist_coefs["left"],
cam_mats["right"],
dist_coefs["right"],
image_size,
rot_mat, trans_vec, flags=0)
for side in ("left", "right"):
(undistortion_maps[side],
rectification_maps[side]) = cv2.initUndistortRectifyMap(cam_mats[side],
dist_coefs[side],
rect_trans[side],
proj_mats[side],
image_size,
cv2.CV_32FC1)
## Produce disparity map
rectified_l = cv2.remap(input_l, undistortion_maps["left"],
rectification_maps["left"],
cv2.INTER_NEAREST)
rectified_r = cv2.remap(input_r, undistortion_maps["right"],
rectification_maps["right"],
cv2.INTER_NEAREST)
cv2.imshow("left", rectified_l)
cv2.imshow("right", rectified_r)
block_matcher = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, 0, 5)
disp = block_matcher.compute(rectified_l, rectified_r, disptype=cv2.CV_32F)
cv2.imshow("disparity", disp)
What's going wrong here?