9
votes

I've been looking for a solution to plot survival curves using ggplot2. I've found some nice examples, but they do not follow the whole ggplot2 aesthetics (mainly regarding shaded confidence intervals and so on). So finally I've written my own function:

ggsurvplot<-function(s, conf.int=T, events=T, shape="|", xlab="Time", 
                  ylab="Survival probability", zeroy=F, col=T, linetype=F){

#s: a survfit object.
#conf.int: TRUE or FALSE to plot confidence intervals.
#events: TRUE or FALSE to draw points when censoring events occur
#shape: the shape of these points
#zeroy: Force the y axis to reach 0
#col: TRUE, FALSE or a vector with colours. Colour or B/W
#linetype: TRUE, FALSE or a vector with line types.

require(ggplot2)
require(survival)

if(class(s)!="survfit") stop("Survfit object required")

#Build a data frame with all the data
sdata<-data.frame(time=s$time, surv=s$surv, lower=s$lower, upper=s$upper)
sdata$strata<-rep(names(s$strata), s$strata)

#Create a blank canvas
kmplot<-ggplot(sdata, aes(x=time, y=surv))+
    geom_blank()+
    xlab(xlab)+
    ylab(ylab)+
    theme_bw()

#Set color palette
if(is.logical(col)) ifelse(col,
                         kmplot<-kmplot+scale_colour_brewer(type="qual", palette=6)+scale_fill_brewer(type="qual", palette=6),
                         kmplot<-kmplot+scale_colour_manual(values=rep("black",length(s$strata)))+scale_fill_manual(values=rep("black",length(s$strata)))
                        )
else kmplot<-kmplot+scale_fill_manual(values=col)+scale_colour_manual(values=col)

#Set line types
if(is.logical(linetype)) ifelse(linetype,
                              kmplot<-kmplot+scale_linetype_manual(values=1:length(s$strata)),
                              kmplot<-kmplot+scale_linetype_manual(values=rep(1,  length(s$strata)))
                              )
else kmplot<-kmplot+scale_linetype_manual(values=linetype)

#Force y axis to zero
if(zeroy) {
    kmplot<-kmplot+ylim(0,1)
}

#Confidence intervals
if(conf.int) {  

    #Create a data frame with stepped lines
    n <- nrow(sdata)
    ys <- rep(1:n, each = 2)[-2*n] #duplicate row numbers and remove the last one
    xs <- c(1, rep(2:n, each=2))   #first row 1, and then duplicate row numbers
    scurve.step<-data.frame(time=sdata$time[xs], lower=sdata$lower[ys], upper=sdata$upper[ys],  surv=sdata$surv[ys], strata=sdata$strata[ys])

    kmplot<-kmplot+
      geom_ribbon(data=scurve.step, aes(x=time,ymin=lower, ymax=upper, fill=strata), alpha=0.2)
}

#Events
if(events) {
    kmplot<-kmplot+
      geom_point(aes(x=time, y=surv, col=strata), shape=shape)
}

#Survival stepped line
kmplot<-kmplot+geom_step(data=sdata, aes(x=time, y=surv, col=strata, linetype=strata))

#Return the ggplot2 object
kmplot
}

I wrote a previous version using for loops for each strata, but is was slower. As I'm not a programmer, I look for advice to improve the function. Maybe adding a data table with patients at risk, or a better integration in the ggplot2 framework.

Thanks

2

2 Answers

7
votes

You could try the following for something with shaded areas between CIs:

(I'm using the development version here as there's a flaw with the parameter alpha in the production version (doesn't shade upper rectangles correctly for non-default values). Otherwise the functions are identical).

library(devtools)
dev_mode(TRUE) # in case you don't want a permanent install
install_github("survMisc", "dardisco")
library("survMisc", lib.loc="C:/Users/c/R-dev") # or wherever you/devtools has put it
data(kidney, package="KMsurv")
p1 <- autoplot(survfit(Surv(time, delta) ~ type, data=kidney),
               type="fill", survSize=2, palette="Pastel1",
               fillLineSize=0.1, alpha=0.4)$plot
p1 + theme_classic()
dev_mode(FALSE)

giving:

enter image description here

And for a classic plot and table:

autoplot(autoplot(survfit(Surv(time, delta) ~ type, data=kidney),
                  type="CI"))

enter image description here

See ?survMisc::autoplot.survfit and ?survMisc::autoplot.tableAndPlot for more options.

0
votes

I wanted to do the same thing and also got the error from the cartesian error. In addition I wanted to have numbers of censored in my code and numbers of events. So I wrote this little snippet. Still a bit raw but maybe useful for some.

ggsurvplot<-function(  
  time, 
  event, 
  event.marker=1, 
  marker,
  tabletitle="tabletitle", 
  xlab="Time(months)", 
  ylab="Disease Specific Survival", 
  ystratalabs=c("High", "Low"),
  pv=TRUE,
  legend=TRUE, 
  n.risk=TRUE,
  n.event=TRUE,
  n.cens=TRUE,
  timeby=24, 
  xmax=120,
  panel="A")

{
  require(ggplot2)
  require(survival)
  require(gridExtra)

  s.fit=survfit(Surv(time, event==event.marker)~marker)
  s.diff=survdiff(Surv(time, event=event.marker)~marker)


  #Build a data frame with all the data
  sdata<-data.frame(time=s.fit$time, 
                    surv=s.fit$surv, 
                    lower=s.fit$lower, 
                    upper=s.fit$upper,
                    n.censor=s.fit$n.censor,
                    n.event=s.fit$n.event,
                    n.risk=s.fit$n.risk)
  sdata$strata<-rep(names(s.fit$strata), s.fit$strata)
  m <- max(nchar(ystratalabs))
  if(xmax<=max(sdata$time)){
    xlims=c(0, round(xmax/timeby, digits=0)*timeby)
  }else{
    xlims=c(0, round((max(sdata$time))/timeby, digits=0)*timeby)
  }
  times <- seq(0, max(xlims), by = timeby)
  subs <- 1:length(summary(s.fit,times=times,extend = TRUE)$strata)
  strata = factor(summary(s.fit,times = times,extend = TRUE)$strata[subs])
  time = summary(s.fit, time = times, extend = TRUE)$time


  #Buidling the plot basics
  p<-ggplot(data = sdata, aes(colour = strata, group = strata, shape=strata)) + 
                        theme_classic()+
                        geom_step(aes(x = time, y = surv), direction = "hv")+
                        scale_x_continuous(breaks=times)+ 
                        scale_y_continuous(breaks=seq(0,1,by=0.1)) +
                        geom_ribbon(aes(x = time, ymax = upper, ymin = lower, fill = strata), directions = "hv", linetype = 0,alpha = 0.10) + 
                        geom_point(data = subset(sdata, n.censor == 1), aes(x = time, y = surv), shape = 3) + 
                        labs(title=tabletitle)+
                        theme(
                          plot.margin=unit(c(1,0.5,(2.5+length(levels(factor(marker)))*2),2), "lines"),
                          legend.title=element_blank(),
                          legend.background=element_blank(),
                          legend.position=c(0.2,0.2))+
                        scale_colour_discrete(
                          breaks=c(levels(factor(sdata$strata))),
                          labels=ystratalabs) +
                        scale_shape_discrete(
                          breaks=c(levels(factor(sdata$strata))),
                          labels=ystratalabs) +
                        scale_fill_discrete(
                          breaks=c(levels(factor(sdata$strata))),
                          labels=ystratalabs) +
                        xlab(xlab)+
                        ylab(ylab)+
                        coord_cartesian(xlim = xlims, ylim=c(0,1)) 

                        #addping the p-value
                        if (pv==TRUE){
                                pval <- 1 - pchisq(s.diff$chisq, length(s.diff$n) - 1)
                                pvaltxt<-if(pval>=0.001){
                                              paste0("P = ", round(pval, digits=3))
                                          }else{
                                              "P < 0.001"
                                          }
                                          p <- p + annotate("text", x = 0.85 * max(xlims), y = 0.1, label = pvaltxt)
                        }

                        #adding information for tables
                        times <- seq(0, max(xlims), by = timeby)
                        subs <- 1:length(summary(s.fit,times=times,extend = TRUE)$strata)

                        risk.data<-data.frame(strata = factor(summary(s.fit,times = times,extend = TRUE)$strata[subs]),
                                              time = summary(s.fit, time = times, extend = TRUE)$time[subs],
                                              n.risk = summary(s.fit,times = times,extend = TRUE)$n.risk[subs],
                                              n.cens = summary(s.fit, times=times, extend=TRUE)$n.cens[subs],
                                              n.event=summary(s.fit, times=times, extend=TRUE)$n.event[subs])
                        #adding the risk table 
                        if(n.risk==TRUE){ 
                                p<- p + annotate("text", cex=3, x=0.5*max(xlims), y=-0.15, label="Numbers at risk")
                                for (q in 1:length(levels(factor(marker)))){          
                                    p<- p + annotate("text", cex=3, x=-0.15*max(xlims),y=(-0.15+(-0.05*q)), label=paste0(ystratalabs[q]))
                                    for(i in ((q-1)*length(times)+1):(q*length(times))){
                                          p <- p + annotate("text", cex=3, x=risk.data$time[i], y=(-0.15+(-0.05*q)), label=paste0(risk.data$n.risk[i]))
                                    }
                                }
                        }
                        #adding the event table 
                        if(n.event==TRUE){ 
                                p<- p + annotate("text", cex=3, x=0.5*max(xlims), y=(-0.20+(-0.05*length(levels(factor(marker))))), label="Number of events")
                                for (q in 1:length(levels(factor(marker)))){          
                                    p<- p + annotate("text", cex=3, x=-0.15*max(xlims),y=(-0.20+(-0.05*length(levels(factor(marker))))+(-0.05*q)), label=paste0(ystratalabs[q]))
                                for(i in ((q-1)*length(times)+1):(q*length(times))){
                                    p <- p + annotate("text", cex=3, x=risk.data$time[i], y=(-0.20+(-0.05*length(levels(factor(marker))))+(-0.05*q)), label=paste0(risk.data$n.event[i]))
                                  }
                                }
                              }
                        #adding the cens table 
                        if(n.event==TRUE){ 
                                p<- p + annotate("text", cex=3, x=0.5*max(xlims), y=(-0.25+(-0.05*length(levels(factor(marker)))*2)), label="Number of censored")
                                for (q in 1:length(levels(factor(marker)))){          
                                    p<- p + annotate("text", cex=3, x=-0.15*max(xlims),y=(-0.25+(-0.05*length(levels(factor(marker)))*2)+(-0.05*q)), label=paste0(ystratalabs[q]))
                                for(i in ((q-1)*length(times)+1):(q*length(times))){
                                    p <- p + annotate("text", cex=3, x=risk.data$time[i], y=(-0.25+(-0.05*length(levels(factor(marker)))*2)+(-0.05*q)), label=paste0(risk.data$n.cens[i]))
                                  }
                                }
                              }

                        #adding panel marker
                              p <- p + annotate("text", cex=10, x= -0.2*max(xlims), y=1.1, label=panel)
                        #drawing the plot with  the tables outside the margins
                              gt <- ggplot_gtable(ggplot_build(p))
                              gt$layout$clip[gt$layout$name=="panel"] <- "off"
                              grid.draw(gt)
}