I am using CHOLMOD in SuiteSparse to factor an N
by N
large band-diagonal matrix that is relatively sparse, ie, it contains only a few diagonals that are non-zero. The sparsity of the matrix is set by a covariance length parameter l
. The larger l
the greater number of off-diagonal elements that are non-zero.
When l
becomes large and many elements are non-zero, the supernodal CHOLMOD factorization suddenly begins to fail with the error message that "CHOLMOD warning: matrix not positive definite." From checking the math with a separate Python implementation, I know that the matrix should be positive definite. Moreover, when I change from
Common->.supernodal = CHOLMOD_SUPERNODAL;
to
Common->supernodal = CHOLMOD_SIMPLICIAL;
the factorization will then succeed. For the following code example below, the supernodal factorization will succeed as long as l < 2.5
. If I increase l >= 3.0
, I get the error that the matrix is not positive definite. Yet, if I then choose CHOMOD_SIMPLICIAL, the factorization will succeed. Can anyone help me identify why CHOLMOD_SUPERNODAL suddenly fails above a certain sparsity/density? Thank you!
//file is cov.c
//Compile with $ gcc -Wall -o cov -Icholmod cov.c -lm -lcholmod -lamd -lcolamd -lblas -llapack -lsuitesparseconfig
#include <stdio.h>
#include <math.h>
#include "cholmod.h"
#define PI 3.14159265
float k_3_2 (float r, float a, float l, float r0)
{
return (0.5 + 0.5 * cos(PI * r/r0)) * pow(a, 2.) * (1 + sqrt(3) * r/l) * exp(-sqrt(3) * r/l) ;
}
// function to initialize an array of increasing wavelengths
void linspace (double *wl, int N, double start, double end)
{
double j; //double index
double Ndist = (double) N;
double increment = (end - start)/(Ndist -1.);
int i;
for (i = 0; i < N; i++) {
j = (double) i;
wl[i] = start + j * increment;
}
}
// create and return a sparse matrix using a wavelength array and parameters
// for a covariance kernel.
cholmod_sparse *create_sparse(double *wl, int N, double a, double l, cholmod_common *c)
{
double r0 = 6.0 * l; //Beyond r0, all entries will be 0
//Pairwise calculate all of the r distances
int i = 0, j = 0;
double r;
//First loop to determine the number non-zero elements
int M = 0; //number of non-zero elements
for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
r = fabs(wl[i] - wl[j]);
if (r < r0) //Is the separation below our cutoff?
M++;
}
}
/* Initialize a cholmod_triplet matrix, which we will subsequently fill with
* values. This matrix is NxN sparse with M total non-zero elements. 1 means we
* want a square and symmetric matrix. */
cholmod_triplet *T = cholmod_allocate_triplet(N, N, M, 1, CHOLMOD_REAL, c);
if (T == NULL || T->stype == 0) /* T must be symmetric */
{
cholmod_free_triplet (&T, c) ;
cholmod_finish (c) ;
return (0) ;
}
//Do the loop again, this time to fill in the matrix
int * Ti = T->i;
int * Tj = T->j;
double * Tx = T->x;
int k = 0;
//This time, only fill in the lower entries (and diagonal).
for (i = 0; i < N; i++)
{
for (j = 0; j <= i; j++)
{
r = fabs(wl[i] - wl[j]);
if (r < r0) //If the distance is below our cutoff, initialize
{
Ti[k] = i;
Tj[k] = j;
Tx[k] = k_3_2(r, a, l, r0);
k++;
}
}
}
T->nnz = k;
//The conversion will transpose the entries and add to the upper half.
cholmod_sparse *A = cholmod_triplet_to_sparse(T, k, c);
cholmod_free_triplet(&T, c);
return A;
}
int main(void)
{
//Create a sample array of wavelengths for testing purposes.
int N = 3000;
double wl[N];
linspace(wl, N, 5100., 5200.); //initialize with wavelength values
cholmod_common c ; //c is actually a struct, not a pointer to it.
cholmod_start (&c) ; // start CHOLMOD
c.print = 5;
//c.supernodal = CHOLMOD_SIMPLICIAL;
c.supernodal = CHOLMOD_SUPERNODAL;
float l = 2.5;
cholmod_sparse *A = create_sparse(wl, N, 1.0, l, &c);
cholmod_factor *L ;
L = cholmod_analyze (A, &c) ;
cholmod_factorize (A, L, &c) ;
printf("L->minor = %d\n", (int) L->minor);
cholmod_dense *b, *x, *r;
//Create a vector with the same number of rows as A
b = cholmod_ones (A->nrow, 1, A->xtype, &c) ; // b = ones(n,1)
x = cholmod_solve (CHOLMOD_A, L, b, &c) ; // solve Ax=b
//the reason these are length two is because they can be complex
double alpha [2] = {1,0}, beta [2] = {0,0} ; // basic scalars
r = cholmod_copy_dense (b, &c) ; // r = b
cholmod_sdmult (A, 0, alpha, beta, x, r, &c) ; // r = Ax
cholmod_print_dense(r, "r", &c); //This should be equal to b
cholmod_free_sparse(&A, &c); // free all of the variables
cholmod_free_factor(&L, &c);
cholmod_free_dense(&b, &c);
cholmod_free_dense(&x, &c);
cholmod_free_dense(&r, &c);
cholmod_finish (&c) ; // finish CHOLMOD
return (0) ;
}