Adding a twist to Alphii answer, actually the for loop would be second best and about 6 times slower than map
from functools import reduce
import datetime
def time_it(func, numbers, *args):
start_t = datetime.datetime.now()
for i in range(numbers):
func(args[0])
print (datetime.datetime.now()-start_t)
def square_sum1(numbers):
return reduce(lambda sum, next: sum+next**2, numbers, 0)
def square_sum2(numbers):
a = 0
for i in numbers:
a += i**2
return a
def square_sum3(numbers):
a = 0
map(lambda x: a+x**2, numbers)
return a
def square_sum4(numbers):
a = 0
return [a+i**2 for i in numbers]
time_it(square_sum1, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum2, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum3, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
time_it(square_sum4, 100000, [1, 2, 5, 3, 1, 2, 5, 3])
Main changes have been to eliminate the slow sum
calls, as well as the probably unnecessary int()
in the last case. Putting the for loop and map in the same terms makes it quite fact, actually. Remember that lambdas are functional concepts and theoretically shouldn't have side effects, but, well, they can have side effects like adding to a
.
Results in this case with Python 3.6.1, Ubuntu 14.04, Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
0:00:00.257703 #Reduce
0:00:00.184898 #For loop
0:00:00.031718 #Map
0:00:00.212699 #List comprehension