I'm working on this embedded project where I have to resonate the transducer by calculating the phase difference between its Voltage and Current waveform and making it zero by changing its frequency. Where I(current) & V(Voltage) are the same frequency signals at any instant but not the fixed frequency signals approx.(47Khz - 52kHz). All I have to do is to calculate phase difference between these two signals. Which method will be most effective.
FFT of Two signals and then phase difference between the specific components Or cross-correlation of two signals? Or another if any ? Which method will give me most accurate result ? and with what resolution? Does sampling rate affects phase difference's resolution (minimum phase difference which can be sensed) ? I'm new to Digital signal processing, in case of any mistake, correct me.
ADDITIONAL DETAILS:-
Noise In my system can be white/Gaussian Noise(Not significant) & Harmonics of Fundamental (Which might be significant one in resonant mismatch case).
Yes 4046 can be a good alternative with switching regulators. I'm working with (NCO/DDS) where I can scale/ reshape sinusoidal on ongoing basis.
Implementation of Analog filter will be very complex as I will require higher order filter with high roll-off rate for harmonic removal , so I'm choosing DSP based filter and its easy to work with MATLAB DSP Processors.
What sampling rate would you suggest for a ~50 KHz (47Khz-52KHz) system for achieving result in FFT or Goertzel with phase resolution of preferably =<0.1 degrees or less and frequency steps will vary from as small as ~1 to 2Hz . to 50 Hz-200Hz.
My frequency is variable 45KHz - 55Khz ... But will be known to my system... Knowing phase error for the last fed frequency is more desirable. After FFT AND DIGITAL FILTERING , IFFT can be performed for more noise free samples which can be used for further processing. So i guess FFT do both the tasks ...
But I'm wondering about the Phase difference accuracy cause thats the crucial part.