2
votes

Early Cisco routers running IOS operating system enhanced their packet processing speed by doing packet switching within the interrupt handler instead in "regular" operating system process. Doing packet processing in interrupt handler ensured that context switching within operating system does not affect the packet processing. As I understand, interrupt handler is a piece of software in operating system meant for handling the interrupts. How to understand the concept of packet switching done within the interrupt handler?

2
There isn't really anything to understand - maybe you just need to read up on interrupts in general ?Paul R
@Paul R Does this "interrupt switching" mean simply that each packet received by router interface generated an interrupt to router CPU and got immediate attention? This approach had speed advantage over handling packets in OS processes because it is not affected by OS context switching?Martin
Probably - I don't know anything about what Cisco did with these particular routers but it just sounds like a hack to reducee latency.Paul R

2 Answers

1
votes

use of interrupts is preferred when an event requires some immediate attention by the operating system, or a program which installed an interrupt service routine. This as opposed to polling, where software checks periodically whether a condition exists, which indicates that the event has occurred. interrupt service routines aren't commonly meant to do a lot of work themselves. They are rather written to reach their end as quickly as possible, so that normal execution can resume. "normal execution" meaning, the location and state previous processing was interrupted when the interrupt occurred. reason is that it must be avoided that the same interrupt occurs again while its handler is still executed, or it may be ignored, or lead to incorrect results, or even worse, to software failure (crashes). So what an interrupt service routine usually does is, reading any data associated with that event and storing it in a queue, signalling that the queue experienced mutation, and setting things such that another interrupt may occur, then resume by restoring pre-interrupt context. the queued data, associated with that interrupt, can now be processed asynchronously, without risking that interrupts pile up.

0
votes

The following is the procedure for executing interrupt-level switching:

Look up the memory structure to determine the next-hop address and outgoing interface.

Do an Open Systems Interconnection (OSI) Layer 2 rewrite, also called MAC rewrite, which means changing the encapsulation of the packet to comply with the outgoing interface.

Put the packet into the tx ring or output queue of the outgoing interface.

Update the appropriate memory structures (reset timers in caches, update counters, and so forth).

The interrupt which is raised when a packet is received from the network interface is called the "RX interrupt". This interrupt is dismissed only when all the above steps are executed. If any of the first three steps above cannot be performed, the packet is sent to the next switching layer. If the next switching layer is process switching, the packet is put into the input queue of the incoming interface for process switching and the interrupt is dismissed. Since interrupts cannot be interrupted by interrupts of the same level and all interfaces raise interrupts of the same level, no other packet can be handled until the current RX interrupt is dismissed.

Different interrupt switching paths can be organized in a hierarchy, from the one providing the fastest lookup to the one providing the slowest lookup. The last resort used for handling packets is always process switching. Not all interfaces and packet types are supported in every interrupt switching path. Generally, only those that require examination and changes limited to the packet header can be interrupt-switched. If the packet payload needs to be examined before forwarding, interrupt switching is not possible. More specific constraints may exist for some interrupt switching paths. Also, if the Layer 2 connection over the outgoing interface must be reliable (that is, it includes support for retransmission), the packet cannot be handled at interrupt level.

The following are examples of packets that cannot be interrupt-switched:

Traffic directed to the router (routing protocol traffic, Simple Network Management Protocol (SNMP), Telnet, Trivial File Transfer Protocol (TFTP), ping, and so on). Management traffic can be sourced and directed to the router. They have specific task-related processes.

OSI Layer 2 connection-oriented encapsulations (for example, X.25). Some tasks are too complex to be coded in the interrupt-switching path because there are too many instructions to run, or timers and windows are required. Some examples are features such as encryption, Local Area Transport (LAT) translation, and Data-Link Switching Plus (DLSW+).

More here: http://www.cisco.com/c/en/us/support/docs/ios-nx-os-software/ios-software-releases-121-mainline/12809-tuning.html