In addition to the inheritance-based solution proposed by Torsten, you could use std::enable_if
and default function template parameters to enable/disable certain specializations of the function.
For example:
template<typename T>
struct comparer
{
template<typename U = T ,
typename std::enable_if<std::is_floating_point<U>::value>::type* = nullptr>
bool operator()( U lhs , U rhs )
{
return /* floating-point precision aware comparison */;
}
template<typename U = T ,
typename std::enable_if<!std::is_floating_point<U>::value>::type* = nullptr>
bool operator()( U lhs , U rhs )
{
return lhs == rhs;
}
};
We take advantage of SFINAE to disable/enable the different "specializations" of the function depending on the template parameter. Because SFINAE can only depend on function parameters, not class parameters, we need an optional template parameter for the function, which takes the parameter of the class.
I prefer this solution over the inheritance based because:
- It requires less typing. Less typing probably leads to less errors.
- All specializations are written inside the class. This way to write the specializations holds all of the specializations inside the original class , and make the specializations look like function overloads, instead of tricky template based code.
But with compilers which have not implemented optional function template parameters (Like MSVC in VS2012) this solution does not work, and you should use the inheritance-based solution.
EDIT: You could ride over the non-implemented-default-function-template-parameters wrapping the template function with other function which delegates the work:
template<typename T>
struct foo
{
private:
template<typename U>
void f()
{
...
}
public:
void g()
{
f<T>();
}
};
Of course the compiler can easily inline g()
throwing away the wrapping call, so there is no performance hit on this alternative.