A simple approach is to find all contours, obtain the bounding rectangle coordinates using cv2.boundingRect
then extract the ROI using Numpy slicing. We can keep a counter to save each ROI then save it with cv2.imwrite
. Here's a working example:
Input image:
Detected ROIs to extract highlighted in green
Saved ROIs
Code
import cv2
import numpy as np
# Load image, grayscale, Otsu's threshold
image = cv2.imread('1.png')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Find contours, obtain bounding box, extract and save ROI
ROI_number = 0
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(image, (x, y), (x + w, y + h), (36,255,12), 2)
ROI = original[y:y+h, x:x+w]
cv2.imwrite('ROI_{}.png'.format(ROI_number), ROI)
ROI_number += 1
cv2.imshow('image', image)
cv2.waitKey()