Major Edit: I decided to rewrite this question since my original was poorly put. I will leave the original question below to maintain a record. Basically, I need to do Fisher's Test on tables as big as 4 x 5 with around 200 observations. It turns out that this is often a major computational challenge as explained here (I think, I can't follow it completely). As I use both R and Stata I will frame the question for both with some made-up data.
Stata:
tabi 1 13 3 27 46 \ 25 0 2 5 3 \ 22 2 0 3 0 \ 19 34 3 8 1 , exact(10)
You can increase exact()
to 1000 max (but it will take maybe a day before returning an error).
R:
Job <- matrix(c(1,13,3,27,46, 25,0,2,5,3, 22,2,0,3,0, 19,34,3,8,1), 4, 5,
dimnames = list(income = c("< 15k", "15-25k", "25-40k", ">40k"),
satisfaction = c("VeryD", "LittleD", "ModerateS", "VeryS", "exstatic")))
fisher.test(Job)
For me, at least, it errors out on both programs. So the question is how to do this calculation on either Stata or R?
Original Question: I have Stata and R to play with. I have a dataset with various categorical variables, some of which have multiple categories. Therefore I'd like to do Fisher's exact test with more than 2 x 2 categories i.e. apply Fisher's to a 2 x 6 table or a 4 x 4 table.
Can this be done with either R or Stata ?
Edit: whilst this can be done in Stata - it will not work for my dataset as I have too many categories. Stata goes through endless iterations and even being left for a day or more does not produce a solution.
My question is really - can R do this, and can it do it quickly ?
tabi 2 2 2 2 2 \ 13 13 13 13 13 \ 4 4 4 4 4 \ 20 20 20 20 20 , exact
. That's not a proof but it's a counterexample to the idea that 4 x 5 (with n about 200) tables are necessarily problematic. I wonder if your memory request makes things worse. – Nick Cox