Im trying to write a prolog program that receives a representation of an unsolved Hashi board and answers all the possible solutions, using restrictions. Im having an hard time figuring out which is the best (or a very good) way of representing the board with the bridges and without. The program is supposed to draw the boards for an easy reading of the solutions.
board(
[[3, 0, 6, 0, 0, 0, 6, 0, 3],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[2, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 3, 0, 0, 2, 0, 0, 0],
[0, 3, 0, 0, 0, 0, 4, 0, 1]]
).
For example, this representation is only good without the bridges, since it holds no info about them. The drawing of this board would be basicly turning the 0's into spaces, and the board would be drawn like this:
3 6 6 3
1
2 1
1 3 2
3 4 1
which is a decent representation of a real hashi board.
The point now is to be able to draw the same thing, but also draw bridges if there's any. I must be able to do so before i even think of making the restrictions themselves, since going at it with a bad way of representation will make my job alot more difficult.
I started thinking of solutions like this:
if every element of the board would be a list:
[NumberOfConnections, [ListOfConnections]]
but this gives me no info for the drawing, and what would the list of connections really have?
maybe this:
[Index, NumberOfConnections, [ListOfIndex]]
this way every "island" would have a unique ID and the list of connections would have ids but drawing still sounds kinda hard, in the end the bridges can only be horizontal or vertical
Anyway, anyone can think of a better way of representation that makes it the easiest to achive the final goal of the program?