B is not statistically significant. The data is not capable of drawing inferences from it. C does influence B probabilities
df = pd.DataFrame({"A": [10,20,30,40,50], "B": [20, 30, 10, 40, 50], "C": [32, 234, 23, 23, 42523]})
avg_c=df['C'].mean()
sumC=df['C'].apply(lambda x: x if x<avg_c else 0).sum()
countC=df['C'].apply(lambda x: 1 if x<avg_c else None).count()
avg_c2=sumC/countC
df['C']=df['C'].apply(lambda x: avg_c2 if x >avg_c else x)
print(df)
model_ols = smf.ols("A ~ B+C",data=df).fit()
print(model_ols.summary())
df[['B','C']].plot()
plt.show()
df2=pd.DataFrame()
df2['B']=np.linspace(10,50,10)
df2['C']=30
df3=pd.DataFrame()
df3['B']=np.linspace(10,50,10)
df3['C']=100
predB=model_ols.predict(df2)
predC=model_ols.predict(df3)
plt.plot(df2['B'],predB,label='predict B C=30')
plt.plot(df3['B'],predC,label='predict B C=100')
plt.legend()
plt.show()
print("A change in the probability of C affects the probability of B")
intercept=model_ols.params.loc['Intercept']
B_slope=model_ols.params.loc['B']
C_slope=model_ols.params.loc['C']
#Intercept 11.874252
#B 0.760859
#C -0.060257
print("Intercept {}\n B slope{}\n C slope{}\n".format(intercept,B_slope,C_slope))
#lower_conf,upper_conf=np.exp(model_ols.conf_int())
#print(lower_conf,upper_conf)
#print((1-(lower_conf/upper_conf))*100)
model_cov=model_ols.cov_params()
std_errorB = np.sqrt(model_cov.loc['B', 'B'])
std_errorC = np.sqrt(model_cov.loc['C', 'C'])
print('SE: ', round(std_errorB, 4),round(std_errorC, 4))
#check for statistically significant
print("B z value {} C z value {}".format((B_slope/std_errorB),(C_slope/std_errorC)))
print("B feature is more statistically significant than C")
Output:
A change in the probability of C affects the probability of B
Intercept 11.874251554067563
B slope0.7608594144571961
C slope-0.060256845997223814
Standard Error: 0.4519 0.0793
B z value 1.683510336937001 C z value -0.7601036314930376
B feature is more statistically significant than C
z>2 is statistically significant